首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dimethyl fumarate (dmf), diethyl fumarate (def), dimethyl maleate (dmm), and maleic anhydride (ma) react with [Pt(cod)2] (cod = cyclo-octa-1,5-diene) and with [Pt(C2H4)3] to give ‘mixed’ olefin platinum(O) complexes, e.g., [Pt(cod)(def)], [Pt(cod)(ma)], [Pt(C2H4)(dmf)2] or [Pt(C2H4)(dmm)2]. Tris-(olefin)platinum complexes [Pt(def)3] and [Pt(dmf)3] have also been obtained.  相似文献   

2.
Homoleptic olefin platinum(0) complexes, Pt(C7H10)3 and Pt(cod)2, were synthesized by the colorimetric reduction of platinum(II) complexes with SmI2 in the presence of 2-norbornene or COD. This is a practically more convenient method for the synthesis of the Pt(0) complexes than the literature method employing Li2(cot).  相似文献   

3.
2,2′-Bis(o-diphenylphosphino)bibenzyl, o-Ph2PC6H4CH2CH2C6H4PPh2-o (bdpbz), is dehydrogenated by various rhodium complexes to give the planar rhodium(I) complex
, from which the ligand, 2,2′-bis(o-diphenylphosphino)-trans-stilbene (bdpps) can be displaced by treatment with sodium cyanide. The stilbene forms stable chelate olefin complexes with planar rhodium(I) and iridium(I) and with octahedral iridium(III). On reaction with halide complexes of nickel(II), palladium(II) or platinum(II), the stilbene ligands
(R = Ph or o-CH3C6H4) lose a vinyl proton in the form of hydrogen chloride to give chelate, planar σ-vinyls of general formula =CHC6H4PR2-o) (M = Ni, Pd, Pt; X = Cl, Br, I) of high thermal stability; analogous methyl derivatives =CHC6H4PR2-o) are obtained from Pt(CH3)2(COD) (COD = 1,5-cyclooctadiene) and the stilbene ligands. The bibenzyl also forms chelate σ-benzyls HCH2C6H4PPh2-o) (M = Pd, Pt; X = Cl, Br, I). The 1H NMR spectra of the o-tolyl methyl groups in the compounds =CHC6H4PR2-o) (M = Ni, Pd, Pt; R = o-CH3C6H4) vary with temperature, probably as a consequence of interconversion of enantiomers arising from restricted rotation about the M---P and M---C bonds. Possible mechanisms for the dehydrogenation reactions are briefly discussed.  相似文献   

4.
Novel neutral biimidazolate or bibenzimidazolate palladium(II) and platinum(II) complexes of the type M(NN)2(dpe) [M = Pd, Pt; (NN)22? = BiIm2?, BiBzIm2?. dpe = 1,2-bis(diphenylphosphino) ethane] have been obtained by reacting MCl2(dpe) with TI2(NN)2. Complexes M(NN)2(dpe) which are Lewis bases react with HClO4 or [M(dpe)(Me2CO)2](ClO4)2 to yield, respectively, mononuclear cationic complexes of general formula [M{H2(NN)2](dpe) (M = Pd, Pt; H2(NN)2 = H2BiIm, H2BiBzIm) and homobinuclear palladium(II) or platinum(II) cationic complexes of the type [M2{μ - (NN)2}(dpe)2](ClO4)2. Reactions of M(BiBzIm)(dpe) with [Rh(COD) (Me2CO)X](ClO4) render similar heterobinuclear palladium(II)-rhodium(I) and platinum(II)-rhodium(I) cationic complexes, of general formula [(dpe)M(μ-BiBzIm)Rh(COD)](ClO4) (M = Pd, Pt; COD = 1,5-cyclooctadiene). Di- and mono-carbonyl derivatives [(dpe)M(μ-BiBzIm)Rh(CO)L](ClO4) (M = Pd, Pt; L = CO, PPh3) have also been prepared. The structures of the resulting complexes have been elucidated by conductance studies and IR spectroscopy.  相似文献   

5.
The redox reaction of bis(2-benzamidophenyl) disulfide (H2L-LH2) with [Pd(PPh3)4] in a 1:1 ratio gave mononuclear and dinuclear palladium(II) complexes with 2-benzamidobenzenethiolate (H2L), [Pd(H2L-S)2(PPh3)2] (1) and [Pd2(H2L-S)2 (μ-H2L-S)2(PPh3)2] (2). A similar reaction with [Pt(PPh3)4] produced only the corresponding mononuclear platinum(II) complex, [Pt(H2L-S)2(PPh3)2] (3). Treatment of these complexes with KOH led to the formation of cyclometallated palladium(II) and platinum(II) complexes, [Pd(L-C,N,S)(PPh3)] ([4]) and [Pt(L-C,N,S) (PPh3)] ([5]). The molecular structures of 2, 3 and [4] were determined by X-ray crystallography.  相似文献   

6.
Naphthaldimines containing N2O2 donor centers react with platinum(II) and (IV) chlorides to give two types of complexes depending on the valence of the platinum ion. For [Pt(II)], the ligand is neutral, [(H2L1)PtCl2]·3H2O (1) and [(H2L3)2Pt2Cl4]·5H2O (3), or monobasic [(HL2)2Pt2Cl2]·2H2O (2) and [(HL4)2Pt]·2H2O (4). These complexes are all diamagnetic having square-planar geometry. For [Pt(IV)], the ligand is dibasic, [(L1)Pt2Cl4(OH)2]·2H2O (5), [(L2)Pt3Cl10]·3H2O (6), [(L3)Pt2Cl4(OH)2]·C2H5OH (7) and [(L4)Pt2Cl6]·H2O (8). The Pt(IV) complexes are diamagnetic and exhibit octahedral configuration around the platinum ion. The complexes were characterized by elemental analysis, UV-Vis and IR spectra, electrical conductivity and thermal analyses (DTA and TGA). The molar conductances in DMF solutions indicate that the complexes are non-ionic. The complexes were tested for their catalytic activities towards cathodic reduction of oxygen.  相似文献   

7.
The syntheses and structures of two mixed‐ligand complexes of platinum(II) with deprotonated oxopurine bases and tri­phenyl­phosphine are reported, namely the theophyllinate complex cis‐bis(1,2,3,6‐tetra­hydro‐1,3‐di­methyl­purine‐2,6‐dionato‐κN7)­bis(tri­phenyl­phosphine‐κP)­platinum(II), [Pt(C7H7N4O2)2(C18H15P)2], (I), and the theobrominate complex cis‐chloro(1,2,3,6‐tetrahydro‐3,7‐dimethylpurine‐2,6‐dionato‐κN1)­bis(tri­phenyl­phosphine‐κP)­platinum(II) ethanol hemisolvate, [PtCl(C7H7N4O2)(C18H15P)2]·0.5C2H5OH, (II). In (I), the coordination geometry of Pt is square planar, formed by the two coordinating N atoms of the theophyl­linate anions in a cis arrangement and two P atoms from the tri­phenyl­phosphine groups. In (II), there are two crystallographically independent mol­ecules. They both exhibit a square‐planar coordination geometry around Pt involving one Cl atom, the coordinating N atom of the theobrominate anion and two P atoms from the tri­phenyl­phosphine groups. The two tri­phenyl­phosphine groups are arranged in a cis configuration in both structures. The heterocyclic rings are rotated with respect to the coordination plane of the metal by 82.99 (8) and 88.09 (8)° in complex (I), and by 85.91 (16) and 88.14 (18)° in complex (II). Both structures are stabilized by intramolecular stacking interactions involving the purine rings and the phenyl rings of adjacent tri­phenyl­phosphine moieties.  相似文献   

8.
《Polyhedron》1987,6(5):921-929
Complexes of the terdentate ligands bis[2-diphenylphosphino)ethyl]benzylamine (DPBA) and bis[2-(diphenylarsino)ethyl]benzylamine (DABA) with Co(II), Ni(II), Pd(II), Pt(II), Rh(III), Ir(III), Rh(I) and Ir(I) are reported. The ligand DPBA reacts with Co(II) ion to form two types of complexes: a high-spin, paramagnetic, tetrahedral Co(II) complex of composition [CoCl(DPBA)]Cl and a low-spin, paramagnetic, square-planar complex of composition [CoBr(DPBA)]B(C6H5)4. The reaction of DPBA with Ni(II) ion in methanol yields low-spin, diamagnetic, square-planar complexes of type [NiX(DPBA)]Y [X = Cl, Br or I; Y = Cl or B(C6H5)4]. Four-coordinate, square-planar, cationic complexes of type [MY(L+[M = Pd(II), Pt(II), Rh(I) or Ir(I); Y = Cl or P(C6H5)3; L = DPBA or DABA], were obtained on reaction of L with various starting materials containing these metal ions. Reaction of DPBA and DABA with rhodium and iridium trichlorides gave octahedral, neutral complexes of general formula [MCl3(L)] (M = Rh or Ir, L = DPBA or DABA). All the complexes were characterized on the basis of their elemental analysis, molarconductance data, magnetic susceptibilities, electronic spectra, IR spectral measurements, and1H and31P-{1H} NMR spectral data.  相似文献   

9.
Monomeric and Polymeric Dimethylaminothiosquarato Complexes: The Crystal Structures of Nickel(II), Cobalt(II), Silver(I), Platinum(II), Gold(I), Mercury(II) and Lead(II) Dimethylaminothiosquarates The ligand 2‐dimethylamino‐3, 4‐dioxo‐cyclobut‐1‐en‐thiolate, Me2N‐C4O2S (L) forms neutral and anionic complexes with nickel(II), cobalt(II)‐, silver(I)‐, platinum(II)‐, gold(I)‐, mercury(II)‐ and lead(II). According to the crystal structures of seven complexes the ligand is O, S‐chelating in [Ni(L)2(H2O)2]·2 H2O, [Co(L)2(CH3OH)2] and (with limitations) in [Pb(L)2·DMF]. In the remaining compounds the ligand behaves essentially as a thiolate ligand. The platinum, gold and mercury complexes [TMA]2[Pt(L)4], [TMA] [Au(L)2] and [Hg(L)2] are monomeric. In [TMA][Ag2(L)3]·5.5 H2O a chain‐like structure was found. In the asymmetric unit of this structure eight silver ions, with mutual distances in the range 2.8949(4) to 3.1660(3)Å, are coordinated by twelve thiosquarato ligands. [Pb(L)2·DMF] has also a polymeric structure. It contains a core of edge‐bridged, irregular PbS4 polyhedra. TMA[Au(H2NC4O2S)2] has also been prepared and its structure elucidated.  相似文献   

10.
In two linkage isomers, bis[1,3‐di­methyl‐2,4,6(1H,3H,5H)‐pyrimidine­trionato]‐C5,O4‐(ethyl­enedi­amine‐N,N′)platinum(II), [Pt(C6H7N2O3)2(C2H8N2)], (I), and bis[1,3‐di­methyl‐2,4,6(1H,3H,5H)‐py­rim­idine­tri­on­ato‐C5](ethyl­enediamine‐N,N′)­plati­num(II) di­hyd­rate, [Pt(C6H7N2O3)2(C2H8N2)]·2H2O, (II), crystal­lized from the same aqueous solution containing [Pt(en)(OH)2] and 1,3‐di­methyl­barbituric acid (Hdmbarb) in a 1:2 molar ratio, a pair of monodentate dmbarb? anions coordinate to the Pt atom at tetrahedral C atoms for (II), while one dmbarb? anion coordinates at the carbon and the other at a deprotonated enol oxy­gen for (I). The Pt—C distances in (I) and (II) are comparable: 2.112 (4) Å for (I), and 2.114 (4) and 2.117 (4) Å for (II).  相似文献   

11.
Crystallization experiments with the dinuclear chelate ring complex di‐μ‐chlorido‐bis[(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform–diethyl ether or methylene chloride–diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile‐κN)(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethylformamide‐κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethyl sulfoxide‐κS)platinum(II), determined as the analogue {η2‐2‐allyl‐4‐methoxy‐5‐[(ethoxycarbonyl)methoxy]phenyl‐κC1}chlorido(dimethyl sulfoxide‐κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the PtII atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt—Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C—H…O and C—H…π interactions, but no π–π interactions are observed despite the presence of the aromatic ring.  相似文献   

12.
Complexes of the type [Pt R2 (dppma-PP′)] (R─Me, Et, Ph, CH2Ph, C6H4 Me-p, C6H4OMe-2, CH2CMe3, 1-naphthyl, C6H4Me-o, dppma = Ph2PNMe PPh2) have been prepared from [PtCl2, (dppma-PP′)] and the corresponding alkyl-lithium or Grignard reagents. Equilibrium constants, k, for the conversion of [PtR2 (dppma-PP′)] into cis-[PtR2(dppma-P)2] with dppma were studied using 31P NMR spectroscopy at room temperature. Equilibrium is rapidly established for R─C6H4-Me-o, at 20°C. Complex of the type cis-[PtR2 (dppma-P)2] was isolated R─C6H4 Me-o. The complexes [PtMe2(dppma-P)2] and [Pt(o-methoxyphenyl)2(dppma-P)2] were prepared, but unfortunately decomposed once isolated, the only evidence for its formation being from 31P-{1H} NMZR spectroscopy. The o-tolyl or 1-naphthyl complexes exist as syn-anti mixtures in solution, due to restricted rotation around the platinum aryl bonds. Treatment of several complexes of the type [PtR2(dppma-PP′)] with MeI gives [PtR2Me(I)(dppma-PP′)] with trans addition of MeI. Treatment of [PtR2(dppma-PP′)] with HCl gives [Pt Cl (R) (dppma-PP′)] for R─C6H2Me3-2,4,6, C6H4-CH3-2, C6H4-Me-4, Me, 1-naphthyl. The 1H, 31P NMR parameters for these complexes are discussed. Attempted preparation of complexes of the type [PtR2 (dppma-P)2M] (R─C6H4-Me-2, Me CN-C6H4-Me-4); M─Pd, Pt, Au,) are reported.  相似文献   

13.
The structure of a platinum(II) complex containing (R)-(dimethylamino)ethylnapthyl and bis(diphenylphosphanyl)methane monosulfide ligands, namely, {(R)-1-[1-(dimethylamino)ethyl]napthyl-κ2N,C2}[(diphenylphosphanylmethyl)diphenylphosphine sulfide-κ2P,S]platinum(II) hexafluoridoantimonate dichloromethane monosolvate, [Pt(C14H16N)(C25H22P2S)][SbF6]·CH2Cl2, was determined. The structural features are compared with analogous platinum bis(diphenylphosphanyl)methane monoxide [dppm(O)] and bis(diphenylphosphanyl)methane monoselenide [dppm(Se)] complexes in relation to their potential hemilability and stereochemical nonrigidity.  相似文献   

14.
Bis(8‐quinolinolato‐N,O)­platinum(II), [Pt(C9H6NO)2], (I), has a centrosymmetric planar structure with trans coordination. The molecules form an inclined π stack, with an interplanar spacing of 3.400 (6) Å. 8‐Hydroxy­quinolinium dichloro(8‐quinolinolato‐N,O)­platinate(II) tetrahydrate, (C9H8NO)[PtCl2(C9H6NO)]·4H2O, (II), is soluble in water and is regarded as the synthetic intermediate of the insoluble neutral compound (I). The uncoordinated 8‐hydroxy­quinolinium cations and the monoquinolinolate complexes form an alternating π stack. The origins of fluorescence and phosphorescence in (II) are assigned to the 8‐hydroxy­quinolinium cation and the monoquinolinolate–Pt complex, respectively.  相似文献   

15.
New dicatenar isoquinoline‐functionalized pyrazoles, [HpzR(n,n)iq] (R(n,n)=C6H3(OCnH2n+1)2; n=4, 6, 8, 10, 12, 14, 16, 18), have been strategically designed and synthesized to induce mesomorphic and luminescence properties into the corresponding bis(isoquinolinylpyrazolate)platinum(II) complexes [Pt(pzR(n,n)iq)2]. Thermal studies reveal that all platinum(II) compounds exhibit columnar mesophases over an exceptionally wide temperature range, above 300 °C in most cases. The photophysical behavior was also investigated in solution and in the solid state. As a consequence of the formation of Pt???Pt interactions, the weak greenish emission of the platinum derivatives turns bright orange in the mesophase. Additionally, the complexes are sensitive to a great variety of external inputs, such as temperature, mechanical grinding, pressure, solvents, and vapors. On this basis, they are used as dopant agents of a polyvinylpyrrolidone or poly(methyl methacrylate) polymer matrix to achieve stimuli‐responsive thin films.  相似文献   

16.
The compounds [Pt(C2H4)2(PR3)] [PR3 = P-tBu2Me, P(C6H11)3, PPh3] react dimethyldivinylsilane or dimethyldivinyltin to give chelate complexes [Pt{(CH2CH)2MMe2} (PR3)] (M = Si or Sn). allyltrimethyltin reacts with various diethylene (tertiary phosphine)platinum compounds with cleavage of the allyl group to afford complexes [Pt(SnMe3)(η3-C3H5)(PR2)]. The NMR spectra (13C, 1H and 31P) of the new compounds have been recorded, and the data are discussed in terms of the structures proposed.  相似文献   

17.
Tri(1‐cyclohepta‐2, 4, 6‐trienyl)phosphane, P(C7H7)3 ([P] when coordinated to a metal atom), was used to stabilize complexes of platinum(II) and palladium(II) with chelating dichalcogenolato ligands as [P]M(E∩E) [E = S, ∩ = CH2CH2, M = Pt ( 3a ); E = S, ∩ = 1, 2‐C6H4, M = Pt ( 5a ), Pd ( 6a ); E = S, ∩ = C(O)C(O), M = Pt ( 7a ), Pd ( 8a ); E = S, Se, ∩ = 1, 2‐C2(B10H10), M = Pt ( 9a, 9b ), Pd ( 10a, 10b ); E = S, ∩ = Fe2(CO)6, M = Pt ( 11a ), Pd ( 12a )]. Starting materials in all reactions were [P]MCl2 with M = Pt ( 1 ) and Pd ( 2 ). Attempts at the synthesis of [P]M(ER)2 with non‐chelating chalcogenolato ligands were not successful. All new complexes were characterized by multinuclear magnetic resonance spectroscopy in solution (1H, 13C, 31P, 77Se and 195Pt NMR), and the molecular structures of 5a and 12a were determined by X‐ray analysis. Both in the solid state and in solution the ligand [P] is linked to the metal atom by the P‐M bond and by η2‐C=C coordination of the central C=C bond of one of the C7H7 rings. In solution, intramolecular exchange between coordinated and non‐coordinated C7H7 rings is observed, the exchange process being markedly faster in the case of M = Pd than for M = Pt.  相似文献   

18.
Pseudohalogeno Metal Compounds. LXXVIII. Structures of Planar and Tetrahedral Tetrafulminato Metal Complexes: [N(C3H7)4]2 [Ni(CNO)4], [N(C3H7)4]2 [Pt(CNO)4], and [N(C3H7)4]2 [Zn(CNO)4] The crystals contain the tetrafulminatometallates of an ideal square planar structure ([Ni(CNO)4]2–, [Pt(CNO)4]2–) with D4h symmetry at the nickel and platinum atom and a tetrahedron ([Zn(CNO)4]2–) with perfect Td symmetry at the zinc atom and with linear C≡N–O ligands. The metal carbon bonds (Ni–C: 187 pm, Pt–C: 200 pm, Zn–C: 201 pm) of the metal fulminates are very close to those of the corresponding cyano complexes. In the crystals the anions ([Ni(CNO)4]2–, [Pt(CNO)4]2–, [Zn(CNO)4]2–) are separated by the cations ([N(C3H7)4]+) which explains the thermal stability of these compounds.  相似文献   

19.
Bis­[(2-pyridyl­methyl)­ammonio]silver(I) trinitrate, [Ag(C6H9N2)2](NO3)3, (I), and bis{bis­[(4-pyridyl­methyl)­ammonio]silver(I)} hexakis­(perchlorate) dihydrate, [Ag(C6H9N2)2]2(ClO4)6·2H2O, (II), are rare examples of complexes with cationic ligands. In (I), the Ag+ cation has a T-shaped [2+1] coordination involving the pyridine N atoms and a nitrate O atom, while in (II) there are three independent two-coordinate Ag complex cations (two with the Ag atoms on independent inversion centres) and disordered ClO4 ions. The crystal structures reveal the role of hydrogen bonding in stabilizing these complexes.  相似文献   

20.
Cyclic voltammetry has been employed to study the diffusive, irreversible platinum(II) → platinum(0) reduction of three sets of structurally related complexes: cis-[PtCl2P{p-C6H4X}3)2] (X = H, CH3, Cl, F, OCH3, N(CH3)2); cis-[PtCl2(PPh2R)2] (R = CH3, n-C3H7, n-C5H11, n-C6H13, n-C12H25) and cis-[PtCl2(PR3)2] (R = CH3, C2H5, CH2ch2CN). Relationships between the peak potentials for the Pt(II) → Pt(0) reduction and thermodynamic parameters which measure the electronic properties of the ligands are shown to exist for complexes of P{p-C6H4X}3 ligands, implying a thermodynamic origin for the sensitivity of the peak potentials to structural change. Complexes of both P{p-C6H4X}3 and PPh2R ligands show correlations between peak potentials for reduction and the 31P{1H} NMR spectroscopic parameter, 1J(195Pt, 31P). Correlations with values of δ(31P) exist in both cases, but a correlation with the coordination chemical shift, Δδ(31P), exists for complexes of PPh2R, and not for complexes of P{C6H4X}3. Complexes of PR3 ligands show no correlation between the peak potentials measured for the Pt(II) → Pt(0) reduction and electronic or spectroscopic parameters, except possibly 1J(195Pt, 31P).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号