首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of the alkyne HCCC(O)OMe with 7 sep 1,2-(Cp*RuH)2B3H7 leads to hydroboration plus hydroruthenation to produce nido-1,3-mu-Me{C(O)OMe}C-1,2-(Cp*Ru)2B3H7, a compound with an exocluster ruthenium-boron mu-alkylidene that exists in two isomeric forms. Both isomers undergo rearrangement with intramolecular chelation of the carbonyl oxygen at a boron site, thereby opening the cluster and generating arachno-2,3,-mu(C)-5-eta1(O)-Me{C(O)OMe}C-1,2-(Cp*Ru)2B3H7. Further heating leads to deoxygenation of the carbonyl fragment by a boron center concurrent with insertion of the carbon atom into the metallaborane cage to give nido-1,2-(Cp*RuH)2-3-HOB-4-MeC-5-MeOC-BH3.  相似文献   

2.
E. Taskinen 《Tetrahedron》1976,32(19):2327-2329
The relative thermodynamic stability of the monoalkoxy- and 1,2-dialkoxyethylene systems [OCCH(C) and OCCO, respectively] has been studied by chemical equilibration of suitable isomeric compounds. Although a single alkoxy substituent stabilizes the CC bond by about 25 kJ mol?1, the 1,2-dialkoxyethylene system is no more stable than the monoalkoxyethylene (“ordinary” vinyl ether) system. On the contrary, the MeOCCOMe system was found to be about 4 kJ mol?1 (on an enthalpy basis) less stable than the system MeOCCH.  相似文献   

3.
Cyclic 1,2-diphenylenediboranes containing a doubly hydrogen-bridged structure, including 1,2-(2,2biphenylylene)diborane(I) and 1,2-(2,2biphenylylene)-1,2-diethyldiborane (II), are conveniently prepared by treating 9-chloro-9-borafluorene with NaBH4 and Na(Et)3BH, respectively. The reaction mechanism involves an initial Cl-H exchange to form 9-borafluorene containing a reactive 5-member ring diarylborane moiety, which subsequently engages in a facile ring expansion with the in situ formed B-H containing residue (BH3 or HBEt2) to result in cyclic 1,2-diphenylenediboranes compounds. The doubly hydrogen-bridged structure shows good thermal stability up to 50 °C. Upon thermal cleavage at higher temperature, all free B-H groups become very reactive involving hydroboration with α-olefin. The complexization study also reveals that this intradiborane moiety forms a 1:2 complex with a strong base, such as pyridine.  相似文献   

4.

The oxidation of 1,2-C2B10H12 (1) with 100% nitric acid was studied in two solvents (CH2C12 and CCl4). Under the action of superacid (CF3SO3H), the compound 9-HO-1,2-C2B10H11 (2) gives the onium cation 9-H2O+-1,2-C2B10H11 involved in the salt [9-H2O+-1,2-C2B10Hn]-CF3SO3?, as demonstrated by uB NMR spectroscopy. The experimental and simulated uB NMR spectra of the cation 9-H2O+-1,2-C2B10H11 are in satisfactory agreement with each other. In the presence of a base, compound 2 is transferred from an ethereal solution to an aqueous alkaline solution giving the anion 9-O?- 1,2-C2B10H11. The structure of compound 2 was confirmed by 1H, 11B, 11B1H, 11B-11B COSY NMR spectroscopy, IR spectroscopy, and gas chromatography mass spectrometry and was additionally established by X-ray diffraction.

  相似文献   

5.
Abstract

(1R,2R)-1,2-bis[5-(arylideneamino)-1,3,4-thiadiazol-2-yl]ethane-1,2-diol (2a–d) were synthesized by using appropriate aldehydes and (1R,2R)-1,2-bis(5-amino-1,3,4-thiadiazol-2-yl)ethane-1,2-diol (1) as a starting compound. Then, the phosphinic acid component (3a–d) were obtained from (2a–d) and hypophosporus acid. In addition, the structures of the novel chiral compounds (2a–d) and (3a–d) were confirmed by elemental analyses, IR, 1H-NMR, 13C-NMR, and 31P-NMR spectra.

1H NMR and 13C NMR spectra for 1, 2a, and 3a (Figures S1–S6) are available online in the Supplemental Materials.  相似文献   

6.
The reaction of di(alkyn‐1‐yl)vinylsilanes R1(H2C═CH)Si(C≡C―R)2 (R1 = Me ( 1 ), Ph ( 2 ); R = Bu (a), Ph (b), Me2HSi (c)) at 25°C with 1 equiv. of 9‐borabicyclo[3.3.1]nonane (9‐BBN) affords 1‐silacyclopent‐2‐ene derivatives ( 3a , 3b , 3c , 4a , 4b ), bearing one Si―C≡C―R function readily available for further transformations. These compounds are formed by consecutive 1,2‐hydroboration followed by intramolecular 1,1‐carboboration. Treated with a further equivalent of 9‐BBN in benzene they are converted at relatively high temperature (80–100°C) into 1‐alkenyl‐1‐silacyclopent‐2‐ene derivatives ( 5a , 5b 6a , 6b ) as a result of 1,2‐hydroboration of the Si―C≡C―R function. Protodeborylation of the 9‐BBN‐substituted 1‐silacyclopent‐2‐ene derivatives 3 , 4 , 5 , 6 , using acetic acid in excess, proceeds smoothly to give the novel 1‐silacyclopent‐2‐ene ( 7 , 8 , 9 , 10 ). The solution‐state structural assignment of all new compounds, i.e. di(alkyn‐1‐yl)vinylsilanes and 1‐silacyclopent‐2‐ene derivatives, was carried out using multinuclear magnetic resonance techniques (1H, 13C, 11B, 29Si NMR). The gas phase structures of some examples were calculated and optimized by density functional theory methods (B3LYP/6‐311+G/(d,p) level of theory), and 29Si NMR parameters were calculated (chemical shifts δ29Si and coupling constants nJ(29Si,13C)). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Coordination Properties of Carbaboranylchlorophosphines: Synthesis and Molecular Structure of cis-rac -Molybdenumtetracarbonyl{1,2-bis(chlorophenylphosphino)-1,2-dicarba-closo-dodecaborane(12)} Rac-1,2-bis(chlorophenylphosphino)-1,2-dicarba-closo-dodecaborane(12) ( 1 ) reacts with [Mo(CO)4(NBD)] (NBD = norbornadiene) after several hours at 50–55 °C to yield cis-rac-[Mo(CO)4{1,2-(PPhCl)2C2B10H10}] ( 2 ). 2 was characterised spectroscopically (1H, 13C, 11B and 31P NMR) and by crystal structure determination.  相似文献   

8.
Earlier we noted that the hydroboration of the trimethylsilyl enol ether of an acyclic ketone results in an elimination of a trimethylsiloxyborane moiety with the subsequent formation of an olefin.1,2 The olefin formed then undergoes hydroboration giving a monoalcohol upon oxidation. (eq 1) We wish to report here on the utility of this sequence, illustrated in eq 1, in the reductive 1,2 transposition of acyclic ketones.3  相似文献   

9.
The reaction of tetra(alkyn‐1‐yl)silanes Si(C?C‐R1)4 1 [R1 = tBu ( a ), Ph ( b ), C6H4‐4‐Me ( c )] with 9‐borabicyclo[3.3.1]nonane (9‐BBN) in a 1:2 ratio affords the spirosilane derivatives 5a – c as a result of twofold intermolecular 1,2‐hydroboration, followed by twofold intramolecular 1,1‐organoboration. Intermediates 3a–c , in which two alkenyl‐ and two alkyn‐1‐yl groups are linked to silicon, were identified by NMR spectroscopy. The molecular structure of the spiro compound 5c was determined by X‐ray analysis, and the solution‐state structures of products and intermediates follow conclusively from the consistent NMR spectroscopic data sets (1H, 11B, 13C and 29Si NMR). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Alkylation of potassium p-nitrobenzohydroxamate with 1,4-dibromobutane gave 2-(p-nitrobenzoyl)tetrahydro-2H-1,2-oxazine (3). The X-ray crystal structure of 3 has been determined. The crystals are monoclinic, space group P21/n with a = 6.749(1), b = 7.644(1), c = 21.557(2)Å, β = 98.89(1), V = 1098.8(2)Å3 and Z = 4. The structure, which was refined to R = 0.039 using 1340 observed reflections, shows the oxazine and carbonyl oxygen atoms trans to each other. Alkylation of potassium benzohydroxamate with 1,3-dibromobutane gave a mixture of 3-methyl-2-benzoyloxazolidine (4) and 5-methyl-2-benzoyloxazolidine (5). The 1H and 13C nmr spectra of the mixture of 4 and 5 indicates that these cyclic hydroxamates exist predominantly in the s-trans conformation.  相似文献   

11.
The compound (Me3Si)3CSiPh2F loses Me3SiF under reflux or on passage through a tube at 450°C to give three products, A, B, and C, in approximately 20/20/60 ratio. Products A and B, which are solids, were shown by X-ray crystallographic analysis to be the diastereoisomeric forms of 1-dimethylsila-2-trimethylsilyl-3-[(methyl)(phenyl)sila]indane. From its mass and 1H NMR spectra, C (a liquid) was tentatively identified as 1,3-bis(dimethylsila)-2-[(dimethyl)(phenyl)silyl]indane. All three products are isomers of the sila-olefin (Me3Si)2CSiPh2, and it is suggested that the latter is first formed by loss of Me3SiF from (MeSi)3CSiPh2F, and the equilibrium (Me3Si)2CSiPh2 ? (Me3Si)(Ph2MeSi)CSiMe2 ? (Me3Si)(PhMe2Si)CSiMePh ? (Me2PhSi)2CSiMe2 is then rapidly established; internal cyclizations involving addition of aryl CH bonds across SiC bonds then occur to give the observed products. Consistent with this is the observation that a mixture of silicon alkoxides, thought to be (Me3Si)2CHSiPh2OMe and its isomers (which would be formed by addition of methanol across the SiC bonds of the four sila-olefins) is produced when methanol is passed through the hot tube with the (Me3Si)3CSiPh2F.Full structural details are given for compounds A and B. Some features of interest are: (a) the conformation of the 5-membered ring is different in the two diastereoisomers; (b) the exocyclic SiCSiMe3 bond angles, of ca. 120° are unusually large; and (c) there is a little distortion of the fused benzene ring, which is attributed to the effect of silicon substituents on the hybridization of carbon atoms to which they are attached.  相似文献   

12.
The reaction between 1,2-diethynyl-tetramethyldisilane (1) and two equivalents of diethylaminotrimethylstannane (2) leads to 1,2-bis(trimethylstannylethynyl)-tetramethyldisilane (3). The new alkyne derivative 3 reacts, already at room temperature, with trialkylboranes, R3B (5) (R = Me, Et), quantitatively to give 1,1,2,2-tetramethyl-3,7-bis(trimethylstannyl)-4,5,6-trialkyl-1,2-dihydro-1,2,5-disilaborepines (6). The reaction is much slower with R = Pri which allows detection of intermediates by NMR spectroscopy. All products are characterized by 1H, 11B, 13C, 29Si and 119Sn NMR data.  相似文献   

13.
A Rh(I) complex [κ2(P,N)-{P(Oquin)3}RhCl(PPh3)] ( 1 ) bearing the P,N ligand tris(8-quinolinyl)phosphite, P(Oquin)3, has been synthesized and structurally characterized. The molecular structure of complex 1 shows that P(Oquin)3 acts as a bidentate P,N chelate ligand. Reactivity studies of 1 reveal that the triphenylphosphine ligand can be replaced by Pcy3 or removed upon oxidation with concomitant coordination of a second 8-quinolyl unit of P(Oquin)3. In addition, the Rh(III) complex [RhCl2{OP(Oquin)2}] ( 3 ), resulting from treating 1 with either wet CDCl3 or, sequentially, with HCl and water, was identified by X-ray diffraction analysis. Complex 1 catalyzes the 1,2-regioselective hydroboration of pyridines and quinolines, affording N-boryl-1,2-dihydropyridines (1,2-BDHP) and N-boryl-1,2-hydroquinolines (1,2-BDHQ) in high yield (up to >95 %) with turnover numbers (TONs) of up to 130. The system tolerates a variety of substrates of different electronic and steric nature. In comparison with other transition-metal-based hydroboration catalysts, this system is efficient at a low catalyst loading without the requirement of base or other additives.  相似文献   

14.
The 16-electron half-sandwich rhodium complex [Cp*Rh{E2C2(B10H10)}] [Cp* = eta5-C5Me5, E = S (1a), Se (1b)] [Cp*Rh{E2C2(B10H10)} = eta5-pentamethylcyclopentadienyl[1,2-dicarba-closo-dodecaborane(12)-dichalcogenolato]rhodium] reacted with Mo(CO)3(py)3 in the presence of BF3.Et2O in THF solution to afford the {Cp*Rh[E2C2(B10H10)]}2Mo(CO)2 (E = S (3a); Se (3b)), {Cp*Rh[S2C2(B10H10)]}{Mo(CO)2[S2C2(B10H10)]} (4). The voluminous di-tert-butyl substituted Cp half-sandwich rhodium complex [Cp'Rh{E2C2(B10H10)}] [E = S (2a), Se (2b)] [CpRh{E2C2(B10H10)} = eta5-(1,3-di(tert-butyl)cyclopentadienyl-[1,2-dicarba-closo-dodecaborane(12)-dichalcogenolato]rhodium) reacted with W(CO)3(py)3 in the presence of BF3.Et2O in THF solution to give the {Cp'Rh[S2C2(B10H10)]}{W(CO)2[S2C2(B10H10)]} (5) and {Cp'Rh[Se2C2(B10H10)]}(mu-CO)[W(CO)3] (6), respectively. The complexes have been fully characterized by IR and NMR spectroscopy as well as by elemental analyses. The X-ray crystal structures of the complexes 3-6 are reported.  相似文献   

15.
A new family of three-legged piano stool structured organometallic compounds containing the η5-cyclopentadienylruthenium(II)/iron(II) fragments {M(η5-C5H5) (DPPE)}+, {Ru(η5-C5H5)(PPh3)2}+ and {Ru(η5-C5H5)(TMEDA)}+ with coordinated thiophene based chromophores, namely 5-(2-thiophen-2-yl-vinyl)-thiophene-2-carbonitrile (L1) and 5-[2-(5-Nitro-thiophen-2-yl)-vinyl]-thiophene-2-carbonitrile (L2) has been synthesized and fully characterized by 1H, 13C, 31P NMR, IR and UV-Vis spectroscopies. Also, electrochemical studies were carried out by cyclic voltammetry and all experimental data are interpreted and compared with related compounds under the scope of NLO properties. Compounds [Ru(η5-C5H5)(DPPE)(NC(C4H2S)C(H)C(H)(C4H3S))][CF3SO3] (1′Ru) [Fe(η5-C5H5)(DPPE)(NC(C4H2S)C(H)C(H)(C4H3S))] [PF6] (1Fe) and [Ru(η5-C5H5)(DPPE)(NC(C4H2S)C(H)C(H)(C4H2S)NO2)][CF3SO3] (4′Ru) were also crystallographically characterized.  相似文献   

16.
The compound (Z)-ethyl 5-(phenylamino)-3-(phenylimino)-3H-1,2-dithiole-4-carboxylate 3 has been synthesized by the reaction of ethylacetoacetate 1 and phenylisothiocyanate 2. Its structure has been established by 1H NMR, 13C NMR, infrared, mass spectra, and x-ray crystallography.   相似文献   

17.
Without any formation of stereoisomers , the intramolecular pinacol cyclization of 1 —planar chiral mono-Cr(CO)3 complexes of 1,1′-biphenyls with carbonyl functionalities at the 2- and 2′-positions—with samarium diiodide gives cyclic trans-1,2-diols 2 . Upon exposure to sunlight, the chromium-complexed diols 2 produce optically pure chromium-free trans-diols 3 . Similarly, the corresponding enantiomerically pure trans-1,2-diamines and amino alcohols are obtained from the planar chiral chromium complexes of biphenyls with diimino or keto-imino functionalities. R1=H, OMe; R2=H, Me; R3=H, Me.  相似文献   

18.
The reduction of 1,2-bis(trimethylsilylimino)acenaphthene (tms-BIAN, 1) with metallic lithium in toluene affords the dilithium salt (tms-BIAN)Li 1,3,2-Diazasiloles (tms-BIAN)SiCl2 (2) and (tms-BIAN)SiMe2 (3) were prepared by the reactions of (tms-BIAN)Li2 with SiCl4 and Me2SiCl2, respectively. The reaction of (tms-BIAN)Li2 with an excess of Me2SiCl2 produces (Cldms-BIAN)SiMe2 (4), where Cldms-BIAN is 1,2-bis(chlorodimethylsilylimino)-acenaphthene. The compound (tms-BIAN)(SiCl3)2 (5) containing two different silyl substituents (Me3Si and Cl3Si) at each nitrogen atom was synthesized by the reaction of compound 1 with Cl3SiSiCl3. The elimination of SiCl4 from compound 5 is accompanied by cyclization to give derivative 2. Compounds 2-5 were characterized by 1H, 13C, and 29Si NMR spectroscopy. The crystal structures of 2-5 were established by X-ray diffraction.  相似文献   

19.
When rac- or meso-1,2-bis(tert-butylchlorophosphino)-1,2-dicarba-closo-dodecaborane(12) (1a or 1b) is reacted with [M(CO)4(NBD)] (M = Cr, Mo, NBD = norbornadiene), [Mo(CO)4(EtCN)2] or [W(CO)6], rac-[Cr(CO)4{1,2-(PtBuCl)2C2B10H10}] (2), rac- or meso-[Mo(CO)4{1,2-(PtBuCl)2C2B10H10}] (3a or 3b) and rac-[W(CO)4{1,2-(PtBuCl)2C2B10H10}] (4) could be isolated as pure diastereomers. UV irradiation of 1 with [Cr(CO)6] in moist THF proceeds with hydrolysis and formation of [Cr(CO)4{1,2-(P(OH)tBu)2C2B10H10}] (5) which contains the metal complex-stabilized phosphinous acid. Compounds 25 were characterized spectroscopically (1H, 31P, 11B, 13C NMR), by mass spectrometry and by X-ray structure determination.  相似文献   

20.
Dimethyl-1,2-diphenyl-3-methyl-cyclobutene-(1)-cis-3,4-dicarboxylate 2 leads in a thermal reaction to an equilibrium with (E, Z)-dimethyl-3,4-diphenyl-5-methyl-muconate (4). The equilibrium is shifted to the cyclic compound by pressure. Dimethyl-3,4-diphenyl-cyclobutene-(1,2-diphenyl-cyclobutene-(1)-cis-3,4-dicarboxylate (3) isomerizes thermally to (E, Z)-dimethyl-2,5-dimethyl-3,4-diphenylmuconate (6). Both reactions are accelerated by pressure. The activation volumes ΔV0+ are given for each ringopening reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号