首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
High-valent Mn-oxo species have been suggested to have a catalytically important role in the water splitting reaction which occurs in the Photosystem II membrane protein. In this study, five- and six-coordinate mononuclear Mn(V) compounds were investigated by polarized X-ray absorption spectroscopy in order to understand the electronic structure and spectroscopic characteristics of high-valent Mn species. Single crystals of the Mn(V)-nitrido and Mn(V)-oxo compounds were aligned along selected molecular vectors with respect to the X-ray polarization vector using X-ray diffraction. The local electronic structure of the metal site was then studied by measuring the polarization dependence of X-ray absorption near-edge spectroscopy (XANES) pre-edge spectra (1s to 3d transition) and comparing with the results of density functional theory (DFT) calculations. The Mn(V)-nitrido compound, in which the manganese is coordinated in a tetragonally distorted octahedral environment, showed a single dominant pre-edge peak along the MnN axis that can be assigned to a strong 3d(z(2))-4p(z) mixing mechanism. In the square pyramidal Mn(V)-oxo system, on the other hand, an additional peak was observed at 1 eV below the main pre-edge peak. This component was interpreted as a 1s to 3d(xz,yz) transition with 4px,y mixing, due to the displacement of the Mn atom out of the equatorial plane. The XANES results have been correlated to DFT calculations, and the spectra have been simulated using a TD (time-dependent)-DFT approach. The relevance of these results to understanding the mechanism of the photosynthetic water oxidation is discussed.  相似文献   

2.
An unprecedented atom connectivity, MnIV(mu-O)MnIV(mu-O)2MnIV(mu-O)MnIV, is found in the complex [MnIV4O4(EtO-terpy)4(OH)2(OH2)2](ClO4)(6).8H2O (EtO-terpy=4'-ethoxyl-2,2':6',2' '-terpyridine), which has been characterized by X-ray crystallography, X-ray powder diffraction, EPR spectroscopy, and magnetic studies. This complex is the first example of a compound where a MnIV ion is coordinated by all three types of water-derived ligands: oxo, hydroxo, and aqua. Bond distances and angles for this complex are consistent with a MnIV4 oxidation state assignment. The di-mu-oxo- and mono-mu-oxo-bridged Mn-Mn distances are 2.80 and 3.51 A, respectively. The variable-temperature magnetic susceptibility data for this complex, in the range of 10-300 K, are consistent with an S=0 ground state and were fit using the spin Hamiltonian HHDvV=-J1S2S1-J2S1S1A-J1S1AS2A (S1=S1A=S2=S2A=3/2) with J1=-432 cm-1 and J2=-164 cm-1 (where J1 and J2 are exchange constants through the mono-mu-oxo and the di-mu-oxo bridges, respectively). The first excited spin state of this tetramer is a spin triplet state at 279 cm-1 above the diamagnetic ground state. The next spin states are the S=1 and S=2 levels at about 700 and 820 cm-1 above the S=0 ground state, respectively. These large energy gaps are consistent with the absence of an EPR signal for this complex, even at high temperature.  相似文献   

3.
The Mn cluster in photosystem II (PS II) is believed to play an important role in the UV photoinhibition of green plants, but the mechanism is still not clear at a molecular level. In this work, the photochemical stability of [Mn(III)(O)(2)Mn(IV)(H(2)O)(2)(Terpy)(2)](NO(3))(3) (Terpy=2,2':6',2'-terpyridine), designated as Mn-oxo mixed-valence dimer, a well characterized functional model of the oxygen-evolving complex in PS II, was examined in aqueous solution by exposing the complex to excess light irradiation at six different wavelengths in the range of 250 to 700 nm. The photodamage of the Mn-oxo mixed-valence dimer was confirmed by the decrease of its oxygen-evolution activity measured in the presence of the chemical oxidant oxone. Ultraviolet light irradiation induced a new absorption peak at around 400-440 nm of the Mn-oxo mixed-valence dimer. Visible light did not have the same effect on the Mn-oxo mixed-valence dimer. We speculate that the spectral change may be caused by conversion of the Mn(III)O(2)Mn(IV) dimer into a new structure--Mn(IV)O(2)Mn(IV). In the processes, the appearance of a 514 nm fluorescence peak was observed in the solution and may be linked to the hydration or protonation of Terpy ligand in the Mn-oxo dimer. In comparing the response of the PS II functional model compound and the PS II complex to excess light radiation, our results support the idea that UV photoinhibition is triggered at the Mn(4)Ca center of the oxygen-evolution complex in PS II by forming a modified structure, possibly a Mn(IV) species, and that the reaction of Mn ions is likely the initial step.  相似文献   

4.
The synthesis and characterization of a binuclear carboxylated bridged manganese complex containing the heptadentate ligand N,N′-bis(2-hydroxybenzyl)-N,N′-bis(2-methylpyridyl)-2-ol-1,3-propanediamine (H3bbppnol) is reported. This complex was characterized by elemental analysis; infrared, electronic (UV–vis) and EPR spectroscopy; and conductivity measurements. The complex was immobilized on silica by either adsorption or entrapment via a sol–gel route. The obtained solids were characterized by thermogravimetric analyses (TG and DSC), UV–vis and infrared spectroscopy, and X-ray diffraction. The catalytic performance of the binuclear manganese complex in epoxidation reactions was evaluated for both homogeneous and heterogeneous systems. The catalytic investigation revealed that the complex performs well as an epoxidation catalyst for the substrates cyclohexene (26–39%) and cyclooctene (29–74%). The solids containing the immobilized complex can be recovered from the reaction medium and reused, maintaining good catalytic activity.  相似文献   

5.
Two structurally homologous Mn compounds in different oxidation states were studied to investigate the relative influence of oxidation state and ligand environment on Mn K-edge X-ray absorption near-edge structure (XANES) and Mn Kbeta X-ray emission spectroscopy (Kbeta XES). The two manganese compounds are the di-mu-oxo compound [L'2Mn(III)O2Mn(IV)L'2](ClO4)3, where L' is 1,10-phenanthroline (Cooper, S. R.; Calvin, M. J. Am. Chem. Soc. 1977, 99, 6623-6630) and the linear mono-mu-oxo compound [LMn(III)OMn(III)L](ClO4)2, where L- is the monoanionic N,N-bis(2-pyridylmethyl)-N'-salicylidene-1,2-diaminoethane ligand (Horner, O.; Anxolabéhère-Mallart, E.; Charlot, M. F.; Tchertanov, L.; Guilhem, J.; Mattioli, T. A.; Boussac, A.; Girerd, J.-J. Inorg. Chem. 1999, 38, 1222-1232). Preparative bulk electrolysis in acetonitrile was used to obtain higher oxidation states of the compounds: the Mn(IV)Mn(IV) species for the di-mu-oxo compound and the Mn(III)Mn(IV) and Mn(IV)Mn(IV) species for the mono-mu-oxo compound. IR, UV/vis, EPR, and EXAFS spectra were used to determine the purity and integrity of the various sample solutions. The Mn K-edge XANES spectra shift to higher energy upon oxidation when the ligand environment remains similar. However, shifts in energy are also observed when only the ligand environment is altered. This is achieved by comparing the di-mu-oxo and linear mono-mu-oxo Mn-Mn moieties in equivalent oxidation states, which represent major structural changes. The magnitude of an energy shift due to major changes in ligand environment can be as large as that of an oxidation-state change. Therefore, care must be exercised when correlating the Mn K-edge energies to manganese oxidation states without taking into account the nature of the ligand environment and the overall structure of the compound. In contrast to Mn K-edge XANES, Kbeta XES spectra show less dependence on ligand environment. The Kbeta1,3 peak energies are comparable for the di-mu-oxo and mono-mu-oxo compounds in equivalent oxidation states. The energy shifts observed due to oxidation are also similar for the two different compounds. The study of the different behavior of the XANES pre-edge and main-edge features in conjunction with Kbeta XES provides significant information about the oxidation state and character of the ligand environment of manganese atoms.  相似文献   

6.
A new mu-phenoxo-bis-mu-acetato di-Mn(II) complex using the BpmpH ligand was isolated as a perchlorate salt (BpmpH = 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methyl-phenol). The X-ray structure has been solved showing that the two Mn(II) ions are in a distorted octahedral environment. Investigation of the variation of the molar magnetic susceptibility upon temperature reveals an antiferromagnetic exchange interaction between the two high-spin Mn(II) ions. Fitting of the experimental data led to g = 1.99 and J = 9.6 cm(-1) (H(HDvV) = JS(A).S(B)). EPR spectra recorded on a powder sample of [(Bpmp)Mn(2)(mu-OAc)(2)](ClO(4)).0.5H(2)O at X-band between 4.3 K and room temperature and at Q-band between 5 and 298 K are presented. A new method based on a scrupulous examination of the variation upon temperature of these experimental spectra is developed here to first assign the transitions to the relevant spin states and second to determine the associated spin parameters. This approach is compared to the deconvolution process that has been previously applied to dinuclear Mn(II) complexes or metalloenzyme active sites. Crystallographic data is as follows: triclinic, space group P one macro, a = 10.154(2) A, b = 12.0454(2) A, c = 17.743(4) A, alpha = 101.69(3) degrees, beta = 93.62(3) degrees, gamma = 94.67(3) degrees, Z = 2.  相似文献   

7.
We report the first high-frequency and -field electron paramagnetic resonance (HFEPR) study of a Mn(III) N-confused porphyrin (NCP) complex (NCP is also known as inverted porphyrin or 2-aza-21-carbaporphyrin). We have found a striking variation in the electronic properties of the S = 2 Mn(III) ion coordinated by NCP compared to other Mn(III) porphyrinoid complexes. Thus, inversion of a single pyrrole ring greatly changes the equatorial ligand field exerted and leads to large magnitudes of both the axial and rhombic zero-field splitting [respectively, D = -3.084(3) cm(-1), E = -0.608(3) cm(-1)], which are unprecedented in other Mn(III) porphyrinoids.  相似文献   

8.
9.
10.
Single crystal EPR studies of Mn(II)-doped magnesium potassium Tutton's salt, MgK2(SO4)2.6H2O, was studied at room temperature. The spin-Hamiltonian parameters obtained are: g=2.0036(3), A = −96(3), D = 350(5), a = 14(2) and F = −5(1) (A, D, a and F are in units of 10−4 cm−1). The tetragonal distortion axis corresponds to one of the MgO bond directions. The zero-field splitting parameter (D) shows a linear dependence in the temperature range 77–370 K. The percentage of covalency of the MnO bond has been estimated to be 8 per cent.  相似文献   

11.
The heart of the oxygen-evolving complex (OEC) of photosystem II is a Mn4OxCa cluster that cycles through five different oxidation states (S0 to S4) during the light-driven water-splitting reaction cycle. In this study we interpret the recently obtained 55Mn hyperfine coupling constants of the S0 and S2 states of the OEC [Kulik et al. J. Am. Chem. Soc. 2005, 127, 2392-2393] on the basis of Y-shaped spin-coupling schemes with up to four nonzero exchange coupling constants, J. This analysis rules out the presence of one or more Mn(II) ions in S0 in methanol (3%) containing samples and thereby establishes that the oxidation states of the manganese ions in S0 and S2 are, at 4 K, Mn4(III, III, III, IV) and Mn4(III, IV, IV, IV), respectively. By applying a "structure filter" that is based on the recently reported single-crystal EXAFS data on the Mn4OxCa cluster [Yano et al. Science 2006, 314, 821-825] we (i) show that this new structural model is fully consistent with EPR and 55Mn-ENDOR data, (ii) assign the Mn oxidation states to the individual Mn ions, and (iii) propose that the known shortening of one 2.85 A Mn-Mn distance in S0 to 2.75 A in S1 [Robblee et al. J. Am. Chem. Soc. 2002, 124, 7459-7471] corresponds to a deprotonation of a mu-hydroxo bridge between MnA and MnB, i.e., between the outer Mn and its neighboring Mn of the mu3-oxo bridged moiety of the cluster. We summarize our results in a molecular model for the S0 --> S1 and S1 --> S2 transitions.  相似文献   

12.
Boc-protected tyrosine-attached corrole ligand on the “ortho” position compound 3, its corresponding copper (III) 4a, manganese (IV) 4b, and manganese (III) 4c complexes have been designed and synthesized based on the structures of active-centers of related biological systems. 1H NMR and electronic absorption spectra of these metal complexes are investigated. The crystal structure of 4a displays the relative position of TyrOH unit to the high valent metal center. Electrochemistry investigations display the possibilities of intramolecular electron or energy transfer between TyrOH group and metal corrole group.  相似文献   

13.
《Polyhedron》2001,20(18):2285-2291
The title binuclear Mn2(III) complex was synthesized through the reaction of 2-[bis(2-benzimidazolylmethyl)amino]ethanol (Hbbml), Mn(DMSO)6(ClO4)3 and o-toluic acid (Htol). X-ray structure analysis shows that the two Mn(III) atoms are bridged by the oxygen atoms of the two bbml ligands, forming a bis(μ-alkoxo)dimanganese core. Electrospray mass spectrometry (ES-MS) experiments shows that the complex cation may easily lose one or two tol ligands leaving an unoccupied coordination site, which would favor the coordination and activation of H2O2. Furthermore, its catalytic activity for the disproportionation of H2O2 and the effect of added heterocyclic base were also investigated. The complex has some similarities to manganese catalase in structure and activity.  相似文献   

14.
15.
To examine the real ability of the binuclear di-mu-oxo complex [Mn2(III,IV)O2(terpy)2(H2O)2]3+ (2) to act as a catalyst for water oxidation, we have investigated in detail its redox properties and that of its mononuclear precursor complex [Mn(II)(terpy)2]2+ (1) in aqueous solution. It appears that electrochemical oxidation of 1 allows the quantitative formation of 2 and, most importantly, that electrochemical oxidation of 2 quantitatively yields the stable tetranuclear Mn(IV) complex, [Mn4(IV)O5(terpy)4(H2O)2]6+ (4), having a linear mono-mu-oxo{Mn2(mu-oxo)2}2 core. Therefore, these results show that the electrochemical oxidation of 2 in aqueous solution is only a one-electron process leading to 4 via the formation of a mono-mu-oxo bridge between two oxidized [Mn2(IV,IV)O2(terpy)2(H2O)2]4+ species. 4 is also quantitatively formed by dissolution of the binuclear complex [Mn2(IV,IV)O2(terpy)2(SO4)2] (3) in aqueous solutions. Evidence of this work is that 4 is stable in aqueous solutions, and even if it is a good synthetic analogue of the "dimers-of-dimers" model compound of the OEC in PSII, this complex is not able to oxidize water. As a consequence, since 4 results from an one-electron oxidation of 2, 2 cannot act as an efficient homogeneous electrocatalyst for water oxidation. This work demonstrates that a simple oxidation of 2 cannot produce molecular oxygen without the help of an oxygen donor.  相似文献   

16.
The biological generation of oxygen by the oxygen-evolving complex in photosystem II (PS II) is one of nature's most important reactions. The recent X-ray crystal structures, while limited by resolutions of 3.2-3.5 A, have located the electron density associated with the Mn4Ca cluster within the multiprotein PS II complex. Detailed structures critically depend on input from spectroscopic techniques, such as EXAFS and EPR/ENDOR, as the XRD resolution does not allow for accurate determination of the position of Mn/Ca or the bridging and terminal ligand atoms. The number and distances of Mn-Mn/Ca/ligand interactions determined from EXAFS provide important constraints for the structure of the Mn4Ca cluster. Here, we present data from a high-resolution EXAFS method using a novel multicrystal monochromator that show three short Mn-Mn distances between 2.7 and 2.8 A and, hence, the presence of three di-mu-oxo-bridged units in the Mn4Ca cluster. This result imposes clear limitations on the proposed structures based on spectroscopic and diffraction data and provides input for refining such structures.  相似文献   

17.
Hao  Xiang  Wei  Yongge  Zhang  Shiwei 《Transition Metal Chemistry》2001,26(4-5):384-387
The compound (Hql)2[Fe2(cit)2(H2O)2]·4H2O (1) [ql = quinoline, cit4– = C(O)(CO 2)(CH2CO 2)2], prepared by reacting ferric nitrate, sodium citrate and quinoline in a molar ratio of 1:1:1 in aqueous solution, was characterized by density measurements, elementary analysis, i.r., X-ray crystallography and magnetic measurements. The X-ray crystallography results reveal that the molecule (1) consists of a binuclear iron(III) citrate anionic complex [Fe2(cit)2(H2O)2]2– and two protonated quinolines [Hql]+. The anionic complex has a centro-symmetric structure, in which two Fe3+ ions are bridged by two 2-alkoxo groups of the two deprotonated citrate ligands. The other coordination sites of the two slightly distorted octahedra are completed by all the carboxylate groups of the two cit4– ligands in a monodentate mode, and two coordinated water molecules. Magnetic measurements indicate that the two Fe3+ ions are antiferromagnetically coupled below 200 K. A least-squares fit of variable-temperature (1.5–291 K) molar susceptibility data to a dimer model gave the coupling constant J/k = –6.35(7) K and Landé factor g = 2.052(9), where the spin-only Heisenberg–Dirac–van Vleck Hamiltonian is expressed as H = –2J S 1 S 2.  相似文献   

18.
19.
20.
The preparation of donor (D)-photosensitizer (S) arrays, consisting of a manganese complex as D and a ruthenium tris(bipyridyl) complex as S has been pursued. Two new ruthenium complexes containing coordinating sites for one (2a) and two manganese ions (3a) were prepared in order to provide models for the donor side of photosystem II in green plants. The manganese coordinating site consists of bridging and terminal phenolate as well as terminal pyridyl ligands. The corresponding ruthenium-manganese complexes, a manganese monomer 2b and dimer 3b, were obtained. For the dimer 3b, our data suggest that intramolecular electron transfer from manganese to photogenerated ruthenium(III) is fast, k(ET) > 5 x 10(7) s(-)(1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号