共查询到20条相似文献,搜索用时 15 毫秒
1.
L.H. Boonstra F.C. Mijlhoff G. Renes A. Spelbos I. Hargittai 《Journal of Molecular Structure》1975,28(1):129-135
The molecular structure of tetramethoxysilane was determined in the gas phase by electron diffraction. The molecule has S4 symmetry, slightly flattened along the axis. The SiO bonds are shorter than in methylsilylether, demonstrating the effect of electronegative substituents on the Si atom. The geometrical parameters (ra structure) are: Si-O bond 1.613 Å; C-O bond 1.414 Å; C-H bond 1.12 Å; O-Si-O angle bisected by S4 axis 115.5°; Si-O-C angle 122.3°; O-C-H angle 111°; methoxyl torsional angle 64°; methyl torsional angle 60°. 相似文献
2.
The molecular structure of methylthionformate in the gas phase has been determined by electron diffraction. The CS and O-CH3 bonds are nearly eclipsed. The dihedral angle between the C-O-C and O-C-S plane is 15.8 ± 2.5°. 相似文献
3.
The structure of trimethoxymethane in the gas phase was studied by electron diffraction, ab initio molecular orbital calculations and molecular mechanics. The molecule was found to exist almost exclusively as an asymmetric all-staggered TGG conformer. The electron diffraction structural parameters (rg distances, rα angles) as obtained from geometrically consistent rα-refinements are: r(C-O) central 1.382(6) Å, r(C-O) terminal 1.418(6) Å, r(C-H) 1.112(1) Å, ∠(O-C-O) in the gauche—gauche chain 115.0(1.0)°, in the gauche-anti chains 109.2(0.6)° ∠(C-O-C) 114.3(0.6)°, ∠(O-C-H)Me 109.9(0.3)°, methyl torsion 68(6)°. The structure is adequately reproduced by molecular mechanics calculations applying Allinger's force field. The structures of methoxymethanes can be explained in terms of the anomeric effect. This is confirmed by ab initio calculations. 相似文献
4.
The structure of silyi formate, HCOOSiH3, in the gas phase is determined by electron diffraction. The principal bond lengths and angles (ra) are r(Si-O) = 169.5 ± 0.3 pm, r(C-O) = 135.1 ± 0.6 pm, r(C O) = 120.9 ± 0.7 pm, ∠(C-O-Si) = 116.8 ± 0.5°, ∠(OC-O) = 123.5 ± 0.5°. The silyi group is twisted by 21° away from the planar cis conformation but there is nevertheless a very short (286.5 ±1.0 pm) non-bonded Si ·O contact. 相似文献
5.
The cis-Stilbene molecule is found to possess C2 symmetry and may be described as having a propeller-like conformation with the phenyl groups rotated ca. 43° about the C-φ bonds. The deviation from planarity is found to be more extensive than predicted by most theoretical calculations. The steric strain in the molecule is also revealed by large valence angles at the central carbon-carbon double bond (∠CC-C: 129.5°). 相似文献
6.
M. Traetteberg E.B. Frantsen F.C. Mijlhoff A. Hoekstra 《Journal of Molecular Structure》1975,26(1):57-68
The molecular structure of trans-stilbene has been studied by the gas electron diffraction method. Unlike the approximately planar structure with Ci symmetry found for the solid state, the molecule in the gas phase was found to be non-planar and to possess C2 symmetry. The phenyl groups were found to be rotated ca. 30° about the C-φ bonds. The non-planarity of the molecule is, however, not so large as to seriously influence the resonance energy. 相似文献
7.
The electron diffraction data of cycloheptanone, collected at 371 K, can be explained using a model of partial pseudorotation, with the symmetrical twist—chair as the mean structure. Therg, rα-structure is characterized by r(C-C) = 1.536 Å, r(C=O) = 1.219 Å, r(C-H) = 1.124 Å, xxxCC(sp2)C = 117.3°, xxx(CCC = 115.5° and xxx(HCH = 103.2°. Approximate values for the constants of the pseudorotation potential are included. 相似文献
8.
Quang Shen 《Journal of Molecular Structure》1983,102(3-4):325-332
Dichlorotetramethyldisiloxane is studied by gas-phase electron diffraction at room temperature. The least-squares values of the bond distances (rg) and bond angles () are: r(C---H)=1.084(5) Å, r(Si---O) = 1.624(2) Å, r(Si---C) = 1.852(2) Å, r(Si---Cl) = 2.067(2) Å, SiOSi = 154.0° (1.5), ClSiO = 110.2° (0.8), ClSiC = 109.6°(0.7), HCSi = 111.7°(1.5), OSiC = 110.0°(0.8), τ1 (zero corresponds to the Si---Cl bond trans to the Si---O---Si linkage) = 78°(6) and τ2 = 141°(19). A two-conformer model cannot be ruled out. 相似文献
9.
10.
11.
R. Carleer 《Journal of Molecular Structure》1978,50(2):345-354
The molecular structure of 1,1-dichloro-1-silacyclohexane (DCSC) and of 1,1-dimethoxyl-silacyclohexane (DMSC) has been determined by gas phase electron diffraction. Starting values for the vibrational parameters were obtained from force field calculations.
Both molecules are in the chair conformation with a flattening in the vicinity of the silicon atom, which is most pronounced in the dichloro-compound. Disregarding the substituents the title compounds show Cs-symmetry. In DMSC the gem-dimethoxy grouping is in the sc, sc conformation in accordance with the anomeric effect.
A comparison is made between the experimentally found geometries with predictions of molecular mechanics calculations based on two available force fields. 相似文献
12.
13.
Quang Shen 《Journal of Molecular Structure》1985,130(3-4):275-282
The molecular structure of gaseous epichlorohydrin has been investigated using electron diffraction data obtained at 67°C. The conformational composition at this temperature is such that the molecules exist predominantly in a gauche-2 conformer (where the C---Cl bond is 160° away from the C---O) bond). Refinements showed that 33% (σ = 4) of the molecule exist in the gauche-1 form. The important distances (rg) and angle () with the associated uncertainties are r(C---H) = 1.095(5) Å, r(C---O) = 1.442(3) Å, r(C---C) = 1.475(8) Å, r(C---CM) = 1.523(7) Å, r(C---Cl) = 1.788(2) Å, CCO = 114° (1), CCCM = 119°(1), ClCC = 108.9° (7), and Tau(ClCCO) = −150°(10) (gauche-2) and Tau(ClCCO) = 78° (10) (gauche-1). 相似文献
14.
The molecular structure of 1,1,2-trichloroethane has been determined by gas phase electron diffraction. The molecule is asymmetric. The geometrical parameters (ra structure) are: r(C-Cl) 1.776 Å; r(C-H) 0.98 Å; ∠(C-C-Cl) 107°; ∠(Cl-C-Cl) projected along the C-C bond 116°; dihedral angle (Cl-C-C-Cl) 75°. The parameters ∠(C-C-H) 102° and the projected (H-C-H) angle 136° are inaccurate. The structure is rather insensitive to the r(C-C) value, which is unusually long, 1.56 to 1.58 Å. 相似文献
15.
16.
The rg structure of cyclopentene oxide has been determined by the simultaneous least squares analysis of electron diffraction and microwave spectroscopic data. The investigation has reaffirmed previous studies indicating that the molecule prefers a boat conformation. The methylene and epoxide flap angles obtained are 152.3±2.1° and 104.7±1.0° respectively. Other structural parameters determined are: rg (C-H avg.) = 1.120±0.004 Å; rg (C-C avg.) = 1.538±0.002 Å; rg (C-O) = 1.443±0.003 Å, and rg (C-C) = 1.482±0.004 Å for the carbon-carbon bond in the three membered epoxide ring. These results compare favorably with the reported structures of ethylene oxide and cyclohexene oxide. A tentative rationalization of the unusual boat conformation is also offered. 相似文献
17.
The molecular structure of N(C2H5)2(SiH3) in the gas phase has been determined by electron diffraction. The SiNC2 skeleton is a shallow pyramid, with angles CNC 114.5(12)° and SiNC 120.9(5)°, and the methyl groups lie so that one CC bond lies close to the CNC plane, but the other is almost perpendicular to it. Other important parameters (ra) are: r(SiN) 171.5(3), r(CN) 145.6(4), r(CC) 154.3(8) pm, and ∠NCC 113.6(6)°. 相似文献
18.
Nearly regular tetrahedral silicon bond configuration and a considerably distorted ring characterize the p-bis(trimethylsilyl)benzene molecular geometry according to an electron diffraction study. The SiCmethyl bond is longer than the SiCphenyl bond, in agreement with expectation but contrary to an X-ray diffraction determination. The extent of ring deformation is consistent with the electropositive character of the trimethylsilyl substituent and with the structural variations in other para-disubstituted benzene derivatives. The electron diffraction data are consistent with either free rotation around the SiCphenyl bonds or with a rotamer deviating by about 15° from the eclipsed form. The following bond lengths (rg, pm) and bond angles (°) have been determined with parenthesized estimated total errors: (CC)mean 140.8(3), (Cipso)(CorthoCmeta) 1.6(7), (SiC)mean 188.0(4), (SiCmethyl)(SiCphenyl) 3.3(7), (CH)methyl 111.3(3), CCipsoC 115.7(6), and CphenylSiCmethyl 109.2(4). 相似文献
19.
The structure of 1,1,1-trimethoxyethane has been studied by electron diffraction in the gas phase. Although this technique cannot discriminate between a GGG (point symmetry C3) and a TGG (C1) conformation, vibrational spectra indicate that in the gas phase the C1 conformer is predominant. Constraints necessary for a satisfactory leastsquares refinement were obtained from molecular mechanics calculations. The molecular geometry as obtained from rα-refinements is as follows (rg distances, rα angles; standard deviations in parentheses): r(C-O central = 1.398 (6) Å, r(C-O)terminal = 1.431(6)Å, r(C-C) = 1.527 (6) Å, r(C-H) = 1.114 (1) Å, ∠(C-O-C) = 114.0 (4)°, ∠(O-C-H) = 110.7 (4)°; the C-C-O and O-C-0 angles around the central carbon range between 106.6° and 113.1°. 相似文献
20.
A.A.J. Maagdenberg 《Journal of Molecular Structure》1977,41(1):61-65
Analysis of the electron diffraction patterns of trifluoroacetic acid at 140°C indicates the existence of one conformation with the CF3-group rotated 17.3± 0.9° from a position with a fluorine atom eclipsed with respect to the CO bond. The data does not exclude the possibility of free internal rotation but it seems improbable.The important bond lengths, rg(1), and bond angles with their standard deviations in parentheses, are: C-F: 1.325 (0.003), C-C: 1.546 (0.005), CO: 1.192 (0.003), C-O: 1.353 (0.014) Å, C-C-F: 109.5 (0.3), C-CO: 126.8 (0.8), C-C-O: 111.1 (0.9)°. 相似文献