首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The age hardening 6061-T6 aluminium alloy has been chosen as structural material for the core vessel of the material testing Jules Horowitz nuclear reactor. The alloy contains incoherent Al(Cr, Fe, Mn)Si dispersoids whose characterization by energy-filtered transmission electron microscopy (EFTEM) analysis shows a core/shell organization tendency where the core is (Mn, Fe) rich, and the shell is Cr rich. The present work studies the stability of this organization under irradiation. TEM characterization on the same particles, before and after 1 MeV electron irradiation, reveals that the core/shell organization is enhanced after irradiation. It is proposed that the high level of point defects, created by irradiation, ensures a radiation-enhanced diffusion process favourable to the unmixing forces between (Fe, Mn) and Cr. Shell formation may result in the low-energy interface segregation of Cr atoms within the (Fe, Mn) system combined with the unmixing of Cr, Fe and Mn components.  相似文献   

2.
Yoon-Uk Heo  Hu-Chul Lee 《哲学杂志》2013,93(36):4519-4531
The effects of Al addition on the precipitation and fracture behaviour of Fe–Mn–Ni alloys were investigated. With the increasing of Al concentration, the matrix and grain boundary precipitates changed from L10 θ-MnNi to B2 Ni2MnAl phase, which is coherent and in cube-to-cube orientation relationship with the α′-matrix. Due to the suppression of the θ-MnNi precipitates at prior austenite grain boundaries (PAGBs), the fracture mode changed from intergranular to transgranular cleavage fracture. Further addition of Al resulted in the discontinuous growth of Ni2MnAl precipitates in the alloy containing 4.2?wt.% Al and fracture occurred by void growth and coalescence, i.e. by ductile dimple rupture. The transition of the fracture behaviour of the Fe–Mn–Ni–Al alloys is discussed in relation to the conversion of the precipitates and their discontinuous precipitation behaviour at PAGBs.  相似文献   

3.
The study of recrystallization texture of a cold deformed Fe–Mn–Al–Si–C alloy, with about 30% Mn, has been discussed in this paper. The alloy is fully austenitic at room temperature, and therefore, principal FCC rolling textures were developed in this material at different stages of cold rolling. The present study was undertaken to observe the transformation of FCC rolling texture during recrystallization of a heavily cold deformed specimen. It was observed that isothermal annealing at 750 °C led to a weak recrystallisation texture, which was quite similar to the deformation texture developed at the early stage of cold rolling. During recovery stage, a strong Bs/Goss-type texture was developed, which was identified as a new observation in this work.  相似文献   

4.
In the present paper a group of Fe–Cu–X–Si13B9 (X=Cr, Mo, Zr) amorphous alloys has been examined by applying different experimental techniques—magnetic permeability, magnetic after-effect, coercive force and electrical resistivity measurements. It has been shown that their soft magnetic properties can be optimised by 1-h thermal annealing at the temperature close to the crystallisation temperature. This leads to an increase of permeability and a decrease of coercive force, thermal instability (magnetic after-effect intensity) and electrical resistivity of the material. The optimisation effect is discussed in terms of different processes—(i) a formation of a nanocrystalline phase with the grain size much smaller than the ferromagnetic exchange length, (ii) an annealing out of microvoids formed during the fabrication process and also (iii) a decrease of the effective magnetostriction constant. The temperature of optimisation annealing treatment is always higher than the Curie temperatures of the materials and varies approximately linearly with the atomic radius of the alloying additions.  相似文献   

5.
In this work the Mössbauer spectroscopy has been used to study the magnetic properties of Fe2?+?x Mn1???x Al alloys with small deviations of composition from the stoichiometric 2:1:1. The Mössbauer parameters obtained for the L21 phase indicate H hf fields of about 25 T and 30 T at 80 K for Fe atoms at X sites in the ordered X2YZ structure of the L21 full Heusler alloys.  相似文献   

6.
We investigate the influence of C interstitials on the phase stability of Fe–C crystals. We employ the Meyer–Entel interatomic interaction potential which is able to reproduce the austenite-martensite phase transition for pure Fe, and supplement it by a simple pairwise Fe–C interaction potential. Using two different thermodynamic methods, we calculate the free energies of the martensite and austenite phases. We find that C destabilizes the ground-state bcc phase. The decrease in the equilibrium transformation temperature with increasing C content parallels the one found in the experiment. This destabilization is found even if C is added for a potential in which only the bcc phase is stable until the melting point; here, for sufficiently high C addition, a stable fcc phase is established in the phase diagram.  相似文献   

7.
8.
Upon nitriding ferritic iron-based Fe–Cr–Al alloys, containing a total of 1.50 at. % (Cr?+?Al) alloying elements with varying Cr/Al atomic ratio (0.21–2.00), excess nitrogen uptake occurred, i.e. more nitrogen was incorporated in the specimens than compatible with only inner nitride formation and equilibrium nitrogen solubility of the unstrained ferrite matrix. The amount of excess nitrogen increased with decreasing Cr/Al atomic ratio. The microstructure of the nitrided zone was investigated by X-ray diffraction, electron probe microanalysis, transmission electron microscopy and electron energy loss spectroscopy. Metastable, fine platelet-type, mixed Cr1? x Al x N nitride precipitates developed in the nitrided zone for all of the investigated specimens. The degree of coherency of the nitride precipitates with the surrounding ferrite matrix is discussed in view of the anisotropy of the misfit. Analysis of nitrogen-absorption isotherms, recorded after subsequent pre- and de-nitriding treatments, allowed quantitative differentiation of different types of nitrogen taken up. The amounts of the different types of excess nitrogen as function of the Cr/Al atomic ratio are discussed in terms of the nitride/matrix misfit and the different chemical affinities of Cr and Al for N. The strikingly different nitriding behaviors of Fe–Cr–Al and Fe–Cr–Ti alloys could be explained on this basis.  相似文献   

9.
The Fe–Si nanosized particles were obtained by controlled partial crystallization of Fe73.5Si13.5B9Cu1Nb1X2 (X = Nb, Zr, Mo) amorphous alloys. In situ Mössbauer spectroscopy and magnetization measurements have been used to follow the temperature-dependent magnetization of the amorphous as well as of the nanosized Fe–Si particles. Our results, for the residual amorphous and of nanoparticles phases, show that the temperature dependence of the hyperfine field and magnetization of both residual amorphous and nanocrystalline Fe(Si) phases are different from that of the as-quenched bulk amorphous or crystalline Fe3Si alloys. Likewise, from the temperature dependence studies it was possible to determine that the onset temperature of the nanocrystallization process increases in the sequence Mo < Nb < Zr, for the same annealing conditions.  相似文献   

10.
The nucleation behaviour of the homogenization-induced Al6(Fe,?Mn)-to-α-Al–(Fe,?Mn)–Si transformation is investigated in a companion paper to part I (a study with roll-bonded diffusion couples). Diffusion experiments using silicon-coated Al–0.53?wt%?Fe–1.02?wt%?Mn alloy blocks allow control of the thermodynamic driving force for transformation within a microstructure typical of a cast ingot. As expected, this microstructure appears to give ready and yet stochastic nucleation as silicon diffuses into the alloy sections. In addition, transmission electron microscopy is used to analyse partially transformed particles in heat-treated alloy samples of fixed silicon content. This confirms the suggestion made in part I that the transformation preferentially nucleates at matrix grain/cell boundaries. Nucleation theory suggests this results from the ability of the boundaries to relieve volume changes associated with the nucleation event.  相似文献   

11.
12.
Dissolution of large particles in DC-cast 7xxx aluminum alloys is one of the primary objectives of the homogenization process. A mathematical model to describe and predict this complex thermodynamical and kinetical process is of great significance. In this paper, the details of a diffusion-limited dissolution model, based on the thinning, discontinuation and full dissolution (TDFD) mechanism, to predict the dissolution of the Al17(Fe3.2, Mn0.8)Si2 particles is described. The model is capable of predicting the volume fraction and thickness of the particles during homogenization at different temperatures and time intervals. The predicted results are in good agreement with measurements using quantitative X-ray diffraction (QXRD) and quantitative field emission gun-scanning electron microscopy (QSEM). The model predictions of the supersaturation parameter, interface position, interface movement rate of the planar surfaces and the cylindrical edges, and the effect of the occurrence of discontinuities on the dissolution extent are presented.  相似文献   

13.
Results of investigations of the structure-phase state and dislocation substructure formation during thermomechanical hardening of Fe–0.09C–2Mn–1Si steel in different regimes are presented. Methods of transmission electron microscopy reveal the formation of gradient states characterized by regular changes of the structure, phase composition, types, and parameters of the dislocation substructures over the structure cross section.  相似文献   

14.
15.
Mössbauer spectroscopy and X-ray diffraction are used to investigate the kinetics of the mechanical alloying (MA) of Fe and Cr powdered mixtures with Cr contents of 20 to 48 at % in the initial mixtures. Variations during mechanical alloying in specimens with Cr contents of ≤30% and >30% in the initial mixtures are observed for the first time. After MA, specimens are characterized by heterogeneous concentration distributions of Cr and Fe atoms in particles, especially at Cr concentrations of >30% in the initial mixture.  相似文献   

16.
The density functional theory is used to study the local magnetic moments in Fe–Al alloys depending on concentration (from 29 to 44 at% Al) and the Fe nearest environment. We have found three different solutions for the system: a spin-spiral wave (SSW) which has a minimum energy and two collinear states, a ferromagnetic one and a state with both positive and negative Fe magnetic moments (the Fe atoms with many neighboring Al atoms around them have negative magnetic moments, while the other Fe atoms—positive). Both the SSW and the negative Fe moments agree with the experiments. Magnetization curves taken from the literature are analyzed. The assumption of percolation character of the size distribution of magnetic clusters describes well the experimental superparamagnetic behavior above 150 K.  相似文献   

17.
There are many studies to improve the properties of Cu–Al–Mn shape memory alloys, such as high transformation temperatures, ductility and workability. Most of them have been performed by adding a quaternary component to the alloy. In this study, the effect of trace Mg addition on transformation temperatures and microstructures of three different quaternary Cu–Al–Mn–Mg alloys has been investigated using thermal analysis, optical microscopy and XRD techniques. The transformation temperatures are within the range of 120–180 °C, and they have not changed significantly on decreasing the Mn content, replacing with Mg. The fine precipitates have been observed in the alloys with the Mg content up to 1.64 at%. Calculated entropy change and XRD analysis reveal that the alloys with high Al content have mainly 18R-type structure which could be responsible for good ductility and workability.  相似文献   

18.
Physical and mechanical properties of Fe–Al alloys are strongly influenced by atomic ordering and point defects. In the present work positron lifetime (LT) measurements combined with slow positron implantation spectroscopy (SPIS) were employed for an investigation of quenched-in vacancies in Fe–Al alloys with the Al content ranging from 18 to 49 at.%. The interpretation of positron annihilation data was performed using ab-initio   theoretical calculations of positron parameters. Quenched-in defects were identified as Fe-vacancies. It was found that the lifetime of positrons trapped at quenched-in defects increases with increasing Al content due to an increasing number of Al atoms surrounding the Fe vacancies. The concentration of quenched-in vacancies strongly increases with increasing Al content from ≈10−5105 in Fe82Al18Fe82Al18 (i.e. the alloy with the lowest Al content studied) up to ≈10−1101 in Fe51Al49Fe51Al49 (i.e. the alloy with the highest Al content studied in this work).  相似文献   

19.
Roll-bonded diffusion couples are used to investigate a transformation of intermetallic particles from Al6(Fe,?Mn) to α-Al–(Fe,?Mn)–Si that occurs upon homogenization of 3XXX aluminium alloys. By diffusing silicon into an Al–Fe–Mn alloy, the couples permit a progressive increase in the driving force for this 6-to-α transformation, thus allowing study of the nucleation of the transformation. Initially, the aluminium matrix is highly defected from rolling. This microstructure gives frequent (yet stochastic) nucleation of a eutectoid 6-to-α transformation expected from study of direct-chill-cast 3XXX alloys. However, once the matrix has recrystallized, nucleation is restricted to particles that lie on the matrix grain boundaries. The remaining particles, unable to transform eutectoidally, dissolve and supply growth of these α-phase particles, producing marked coarsening.  相似文献   

20.
Abstract

Oxide dispersion strengthened Fe14Cr and Fe14CrWTi alloys produced by mechanical alloying and hot isostatic pressing were subjected to isochronal annealing up to 1400 °C, and the evolution and thermal stability of the vacancy-type defects were investigated by positron annihilation spectroscopy (PAS). The results were compared to those from a non-oxide dispersion strengthened Fe14Cr alloy produced by following the same powder metallurgy route. The long lifetime component of the PAS revealed the existence of tridimensional vacancy clusters, or nanovoids, in all these alloys. Two recovery stages are found in the oxide dispersion strengthened alloys irrespective of the starting conditions of the samples. The first one starting at T > 750 °C is attributed to thermal shrinkage of large vacancy clusters, or voids. A strong increase in the intensity of the long lifetime after annealing at temperatures in the 800–1050 °C range indicates the development of new vacancy clusters. These defects appear to be unstable above 1050 °C, but some of them remain at temperatures as high as 1400 °C, at least for 90 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号