首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 46 毫秒
1.
Quasi-interpolation has been studied in many papers, e. g., [5]. Here we introduce nonseparable scal-ing function quasi-interpolation and show that its approximation can provide similar convergence properties as scalar wavelet system. Several equivalent statements of accuracy of nonseparable scaling function are also given. In the numerical experiments, it appears that nonseparable scaling function interpolation has better convergence results than scalar wavelet systems in some cases.  相似文献   

2.
Quasi-interpolation has been audied in many papers, e.g. , [5]. Here we introduce nonseparable scal-ing function quasi-interpolation and show that its approximation can provide similar convergence propertiesas scalar wavelet system. Several equivalent statements of accuracy of nonseparable scaling function are alsogien. In the numerical experiments, it appears that nonseparable scaling function interpolation has betterconvergonce results than scalar wavelet systems in some cases.  相似文献   

3.
We introduce nonseparable multiscaling function interpolation and show that its approximation can provide similar convergence properties as scalar wavelet system. An equivalent condition for approximation accuracy for nonseparable multiscaling function is also given.  相似文献   

4.
The univariate multiquadric function with centerx j R has the form {? j (x)=[(x?x j )2+c 2]1/2, x∈R} wherec is a positive constant. We consider three approximations, namely, ? A f, ?? f, and ? C f, to a function {f(x),x 0xx N } from the space that is spanned by the multiquadrics {? j :j=0, 1, ...,N} and by linear polynomials, the centers {x j :j=0, 1,...,N} being given distinct points of the interval [x 0,x N ]. The coefficients of ? A f and ?? f depend just on the function values {f(x j ):j=0, 1,...,N}. while ? A f, ? C f also depends on the extreme derivativesf′(x 0) andf′(x N ). These approximations are defined by quasi-interpolation formulas that are shown to give good accuracy even if the distribution of the centers in [x 0,x N ] is very irregular. Whenf is smooth andc=O(h), whereh is the maximum distance between adjacent centers, we find that the error of each quasi-interpolant isO(h 2|logh|) away from the ends of the rangex 0xx N. Near the ends of the range, however, the accuracy of ? A f and ?? f is onlyO(h), because the polynomial terms of these approximations are zero and a constant, respectively. Thus, some of the known accuracy properties of quasiinterpolation when there is an infinite regular grid of centers {x j =jh:jF} given by Buhmann (1988), are preserved in the case of a finite rangex 0xx N , and there is no need for the centers {x j :j=0, 1, ...,N} to be equally spaced.  相似文献   

5.
In the present paper, we study nonlinear approximation properties of multivariate wavelet bi-frames. For a certain range of parameters, the approximation classes associated with best N-term approximation are determined to be Besov spaces and thresholding the wavelet bi-frame expansion realizes the approximation rate. Our findings extend results about dyadic wavelets to more general scalings. Finally, we verify that the required linear independence assumption is satisfied for particular families of nondyadic wavelet bi-frames in arbitrary dimensions.  相似文献   

6.
We establish a result related to a theorem of de Boor and Jia [1]. Their theorem, in turn, corrected and extended a result of Fix and Strang [5] concerning controlled approximation. In our result, the approximating functions are not required to have compact support, but satisfy instead conditions on their behavior at . Our theorem includes some recent results of Jackson [6] and is closely related to the work of Buhmann [2].Communicated by Carl de Boor  相似文献   

7.
8.
In this work, we present a method that will allow us to remove outliers from a data set. Given the measurements of a function f = g + e on a set of sample points \(X \subset \mathbb {R}^{d}\), where \(g \in C^{M+1}(\mathbb {R}^{d})\) is the function of interest and e is the deviation from the function g. We will say that a sample point xX is an outlier if the difference e(x) = f(x) ? g(x) is large. We show that by analyzing the approximation errors on our sample set X, we may predict which of the sample points are outliers. Furthermore, we can identify outliers of very small deviations, as well as ones with large deviations.  相似文献   

9.
The main objective of this paper is to propose a product approximation for the Gamma function in the form of continued fraction, via the Tri-gamma function. The importance of this new formula is that the convergence of the corresponding asymptotic series is faster than other recently discovered asymptotic series, and some new inequalities related to the new formula are also established.  相似文献   

10.
In the classical level set method, the slope of solutions can be very small or large, and it can make it difficult to get the precise level set numerically. In this paper, we introduce an improved level set equation whose solutions are close to the signed distance function to evolving interfaces. The improved equation is derived via approximation of the evolution equation for the distance function. Applying the comparison principle, we give an upper- and lower bound near the zero level set for the viscosity solution to the initial value problem.  相似文献   

11.
We postulate the existence of a natural Poissonian marking of the double (touching) points of SLE6 and hence of the related continuum nonsimple loop process that describes macroscopic cluster boundaries in 2D critical percolation. We explain how these marked loops should yield continuum versions of near-critical percolation, dynamical percolation, minimal spanning trees and related plane filling curves, and invasion percolation. We showthat this yields for some of the continuum objects a conformal covariance property that generalizes the conformal invariance of critical systems. It is an open problem to rigorously construct the continuum objects and to prove that they are indeed the scaling limits of the corresponding lattice objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号