首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We study the ground state properties of theS=1/2 Heisenberg antiferromagnet (HAF) on the triangular lattice with nearest-neighbour (J) and next-nearest neighbour (J) couplings. Classically, this system is known to be ordered in a 120° Néel type state for values-<1/8 of the ratio of these couplings and in a collinear state for 1/8<<1. The order parameter and the helicity /gC of the 120° structure are obtained by numerical diagonalisation of finite periodic systems of up toN=30 sites and by applying the spin-wave (SW) approximation to the same finite systems. We find a surprisingly good agreement between the exact and the SW results in the entire region-<<1/8. It appears that the SW theory is still valid for the simple triangular HAF (=0) although the sublattice magnetisation is substantially reduced from its classical value by quantum fluctuations. Our numerical results for the order parameterM of the collinear order support the previous conjecture of a first order transition between the 120° and the collinear order at 1/8.  相似文献   

3.
4.
5.
We probed the local electronic properties of the mixed-valent Co+4-x triangular lattice in NaxCoO2.yH(2)O by 59Co NMR. We observed two distinct types of Co sites for x > or =1/2, but the valence seems averaged out for x approximately 1/3. Local spin fluctuations exhibit qualitatively the same trend down to approximately 100 K regardless of the carrier concentration x, and hence the nature of the electronic ground state. A canonical Fermi-liquid behavior emerges below approximately 100 K only for x approximately 1/3.  相似文献   

6.
We consider quantum Heisenbergs=1/2 antiferromagnet on a triangular lattice with nearest (J) and next-nearest (J) neighbour exchange interactions. The ground state is constructed from block states-exact solutions of the problem for triangular block. The structure of quantum ground state and its relationship with the classical one is investigated in detail. The approach involved leads to considerable shift of the point of transition between two phases 0.1 (compared with the semiclassical result 0.125). Consideration of spin excitations confirms that spin fluctuations do not destroy the state at the transition point, so the transition is the firstorder one.  相似文献   

7.
The synthesis and characterization of Ba3CuSb2O9, which has a layered array of Cu2+ spins in a triangular lattice, are reported. The magnetic susceptibility and neutron scattering experiments of this material show no magnetic ordering down to 0.2 K with a θ(CW) = -55 K. The magnetic specific heat reveals a T-linear dependence with a γ = 43.4 mJ K(-2) mol(-1) below 1.4 K. These observations suggest that Ba3CuSb2O9 is a new quantum spin liquid candidate with a S = 1/2 triangular lattice.  相似文献   

8.
9.
The magnetic susceptibility and the electron spin resonance in the X-band of the transition metal oxide compound MgVO3 are reported. We show that this compound, made of weakly coupled infinite chains of VO5 pyramids, behaves as a S =1/2 one-dimensional Heisenberg antiferromagnet. From the ESR and magnetic experiments we deduce the Néel temperature K, the in-chain coupling constant K and the g-factor values g x = g z =1.972(2), g y =1.946(1) for V4+ ions in MgVO3. Received 14 July 1999  相似文献   

10.
11.
12.
江学范  刘先锋  吴银忠  韩玖荣 《中国物理 B》2012,21(7):77502-077502
The magnetic and electronic properties of the geometrically frustrated triangular antiferromagnet CuCrO2 are investigated by first principles through density functional theory calculations within the generalized gradient approxi- mations (GGA)+U scheme. The spin exchange interactions up to the third nearest neighbours in the ab plane as well as the coupling between adjacent layers are calculated to examine the magnetism and spin frustration. It is found that CuCrO2 has a natural two-dimensional characteristic of the magnetic interaction. Using Monte Carlo simulation, we obtain the Neel temperature to be 29.9 K, which accords well with the experimental value of 24 K. Based on non- collinear magnetic structure calculations, we verify that the incommensurate spiral-spin structure with (110) spiral plane is believable for the magnetic ground state, which is consistent with the experimental observations. Due to intra-layer geometric spin frustration, parallel helical-spin chains arise along the a, b, or a+ b directions, each with a screw-rotation angle of about I20°. Our calculations of the density of states show that the spin frustration plays an important role in the change of d-p hybridization, while the spin-orbit coupling has a very limited influence on the electronic structure.  相似文献   

13.
We propose a variant of the antiferromagnetic XY model which includes a biquadratic (J2) as well as the quadratic (J1) interaction on the triangular lattice. The phase diagram for large J2/J1 exhibits a phase with coexisting quasi-long-range nematic, and long-ranged vector spin chirality orders in the absence of magnetic order, which qualifies our model as the first instance of a classical spin model that exhibits a vector chiral spin liquid phase. The interplay of nematic and spin chirality orders is discussed. A variety of critical properties are derived by means of Monte Carlo simulation.  相似文献   

14.
Powder neutron diffraction and resonant x-ray scattering measurements from a single crystal have been performed to study the low-temperature state of the 2D frustrated, quantum-Heisenberg system Li2VOSiO4. Both techniques indicate a collinear antiferromagnetic ground state, with propagation vector k=(1 / 2 1 / 2 0), and magnetic moments in the a-b plane. Contrary to previous reports, the ordered moment at 1.44 K, m=0.63(3)micro(B), is very close to the value expected for the square lattice Heisenberg model ( approximately 0.6micro(B)). The magnetic order is three dimensional, with antiferromagnetic a-b layers stacked ferromagnetically along the c axis. Neither x-ray nor neutron diffraction shows evidence for a structural distortion between 1.6 and 10 K.  相似文献   

15.
16.
In this paper finite bcc lattices are defined by a triple of vectors in two different ways - upper triangular lattice form and compact form. In Appendix A are lists of some 260 distinct and useful bcc lattices of 9 to 32 vertices. The energy and magnetization of the S = 1/2 XY ferromagnet have been computed on these bcc lattices in the lowest states for S z = 0, 1/2, 1 and 3/2. These data are studied statistically to fit the first three terms of the appropriate finite lattice scaling equations. Our estimates of the T = 0 energy and magnetization agree very well with spin wave and series expansion estimates. Received 1st August 2000 and Received in final form 22 December 2000  相似文献   

17.
The nature of electronic states due to strong correlation and geometric frustration on the triangular lattice is investigated in connection to the unconventional insulating state of NaxCoO2 at x=0.5. We study an extended Hubbard model using a spatially unrestricted Gutzwiller approximation. We find a new class of charge and spin ordered states at x=1/3 and x=0.5 where antiferromagnetic (AFM) frustration is alleviated via weak charge inhomogeneity. At x=0.5, we show that the square root of 3a x 2a off-plane Na dopant order induces weak square root of 3a x 1a charge order in the Co layer. The symmetry breaking enables successive square root of 3a x 1a AFM and 2a x 2a charge- or spin-ordering transitions at low temperatures. The Fermi surface is truncated by the 2a x 2a hexagonal zone boundary into small electron and hole pockets. We study the phase structure and compare to recent experiments.  相似文献   

18.
The spin-wave excitations of the geometrically frustrated triangular lattice antiferromagnet CuFeO2 have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the ab plane (J1, J2, J3, with J{2}/J{1} approximately 0.44 and J{3}/J{1} approximately 0.57), as well as out-of-plane coupling (J{z}, with J{z}/J{1} approximately 0.29) are required to describe the spin-wave dispersion relations, indicating a three-dimensional character of the magnetic interactions. Two energy dips in the spin-wave dispersion occur at the incommensurate wave vectors associated with multiferroic phase and can be interpreted as dynamic precursors to the magnetoelectric behavior in this system.  相似文献   

19.
We investigate the quantum dynamics of site diluted S=1/2 Heisenberg antiferromagnetic clusters at the 2D percolation threshold. We use Lanczos diagonalization to calculate the lowest excitation gap Delta and, to reach larger sizes, use quantum Monte Carlo simulations to study an upper bound for Delta obtained from sum rules involving the staggered structure factor and susceptibility. Scaling the gap distribution with the cluster length L, Delta approximately L(-), we obtain a dynamic exponent z approximately 2D(f), where D(f)=91/48 is the fractal dimensionality of the percolating cluster. This is in contrast with previous expectations of z=D(f). We argue that the low-energy excitations are due to weakly coupled effective moments formed due to local imbalance in sublattice occupation.  相似文献   

20.
We report pulse-field magnetization, ac susceptibility, and 100 GHz electron spin resonance (ESR) measurements on the S = 5/2 two-dimensional triangular compound Ba3NbFe3Si2O14 with the Néel temperature T(N) = 26 K. The magnetization curve shows an almost linear increase up to 60 T with no indication of a one-third magnetization plateau. An unusually large frequency dependence of the ac susceptibility in the temperature range of T = 20-100 K reveals a spin-glass behavior or superparamagnetism, signaling the presence of frustration-related slow magnetic fluctuations. The temperature dependence of the ESR linewidth exhibits two distinct critical regimes; (i) ΔH(pp)(T) is proportional to (T-T(N))(-p) with the exponent p = 0.2(1)-0.2(3) for temperatures above 27 K, and (ii) ΔH(pp)(T) is proportional to (T-T*)(-p) with T* = 12 K and p = 0.8(1)-0.8(4) for temperatures between 12 and 27 K. This is interpreted as indicating a dimensional crossover of magnetic interactions and the persistence of short-range correlations with a helically ordered state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号