首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Magnetic properties of the bond and crystal field dilution spin-3/2 Blume–Capel model in an external magnetic field (h)(h) on simple cubic lattice are studied by using the effective field theory. In the m−TmT plane, the degeneracy of the magnetization (m)(m) is affected by the concentration of bond or crystal field dilution at low temperature (T)(T). The magnetization curves can appear to fluctuate in certain regions of negative crystal field. In the m−hmh plane, the initial magnetization curve has an irregular behavior due to the introduction of bond dilution. The crystal field dilution has the influence on the process of magnetic domain displacement. In the χ−hχh plane, there exists one susceptibility (χ)(χ) shoulder and one step for different negative crystal field. The susceptibility curve takes on the feature of multi-peaks distribution under bond and crystal field dilution conditions.  相似文献   

2.
3.
Transverse field effect on thermodynamic properties of the spin-3/2 Blume–Capel model on rectangular lattice in which the interactions in perpendicular directions differ in signs is studied within the mean field approximation. Phase diagrams in the (transverse field, temperature) plane are constructed for various values of single-ion anisotropy.  相似文献   

4.
5.
晏世雷  朱海霞 《中国物理》2006,15(12):3026-3032
This paper studies the critical behaviours and magnetic properties of three-dimensional bond and anisotropy dilution Blume--Capel model (BCM) in the presence of an applied field within the effective field theory. The trajectory of tricritical point, reentrant transitions and degenerate patterns of anisotropy are obtained both for the bond and the anisotropy dilutions. The global phase diagrams demonstrate unusually reentrant phenomena. The temperature dependences of magnetization curves undergo remarkable spin glass behaviour at low temperatures, and transform from ferromagnetism to paramagnetism at high temperature in applied fields. Temperature dependence of magnetic susceptibility curve is in qualitative agreement with experimental result.  相似文献   

6.
7.
8.
In the presence of a uniform external magnetic field, the spin-1 fcc antiferromagnetic Ising model in the four sub-lattice with the nearest-neighbor bilinear and crystal field interactions is investigated by using mean-field theory. The lattice is considered in blocks and each block contains 32 spins. While the central four spins forming a basic tetrahedron structure are allowed to fluctuate, the surrounding 28 spins take the mean-field values. The ground state phase diagram of the system is examined since it provides valuable information to make a prediction of the different phase diagram topologies. The phase diagrams are obtained on the reduced external field versus temperature, (H/|J|−kT/|J|)(H/|J|kT/|J|), plane for selected crystal field interaction values from the ground state phase diagram and it is found that the system exhibits reentrant behavior and some special points such as tricritical, bicritical and triple points.  相似文献   

9.
The antiferromagnetic Blume–Emery–Griffiths model in an external magnetic field is studied by using the exact recursion relations on the Bethe lattice for arbitrary values of biquadratic and for negative values of bilinear interactions. We have studied the thermal variations of two-sublattice magnetizations belonging to spin-1 BEG model to obtain the phase diagrams on the (H/|J|,kT/|J|)(H/|J|,kT/|J|) plane. As a result, we have found that the system presents second- and first-order phase transitions, therefore, tricritical points for appropriate values of K/|J|K/|J|, D/|J|D/|J| and q  . We have also found that the second-order phase transition lines exhibit reentrant phenomena in temperature, besides it also shows reentrant phenomena for the first-order phase lines in external magnetic field for q=4q=4 and 6.  相似文献   

10.
The spin-1 Blume–Capel (BC) model is studied on the Bethe lattice (BL) for the ?±? J distribution with a competing adjustable parameter α which alters the strength of bilinear exchange interaction parameter for the ferromagnetic phase (J?>?0) with respect to antiferromagnetic phase (J?<?0). The J?>?0 and αJ?<?0 values are also distributed throughout the BL with probabilities p and 1?p, respectively. The order-parameters are obtained on the BL in terms of exact recursion relations (ERR’s) and their temperature (T) variations are studied to calculate the phase diagrams on the (α, T) planes for given values of p, crystal field (D) and coordination number q=3 corresponding to honeycomb lattice. It is found that the model gives both first- and second-order phase transitions and also tricritical points. In addition to the well known ordinary phases and TCP’s, the spin glass phase and two more special points are also observed.  相似文献   

11.
The dynamic magnetic behavior of the kinetic metamagnetic spin-5/2 Blume–Capel model is examined, within a mean-field approach, under a time-dependent oscillating magnetic field. To describe the kinetics of the system, Glaubertype stochastic dynamics has been utilized. The mean-field dynamic equations of the model are obtained from the Master equation. Firstly, these dynamic equations are solved to find the phases in the system. Then, the dynamic phase transition temperatures are obtained by investigating the thermal behavior of dynamic sublattice magnetizations. Moreover, from this investigation, the nature of the phase transitions(first- or second-order) is characterized. Finally, the dynamic phase diagrams are plotted in five different planes. It is found that the dynamic phase diagrams contain the paramagnetic(P),antiferromagnetic(AF5/2, AF3/2, AF1/2) phases and five different mixed phases. The phase diagrams also display many dynamic critical points, such as tricritical point, triple point, quadruple point, double critical end point and separating point.  相似文献   

12.
A spin-1 Blume–Capel model with dilute and random crystal fields is examined for honeycomb and square lattices by introducing an effective-field approximation that takes into account the correlations between different spins that emerge when expanding the identities. For dilute crystal fields, we have given a detailed exploration of the global phase diagrams of the system in kBTc/J−D/JkBTc/JD/J plane with the second and first order transitions, as well as tricritical points. We have also investigated the effect of the random crystal field distribution characterized by two crystal field parameters D/JD/J and △/J/J on the phase diagrams of the system. The system exhibits clear distinctions in a qualitative manner with coordination number qq for random crystal fields with △/J,D/J≠0/J,D/J0. We have also found that, under certain conditions, the system may exhibit a number of interesting and unusual phenomena, such as reentrant behavior of first and second order, as well as a double reentrance with three successive phase transitions.  相似文献   

13.
The spin-1 Blume–Capel model on a square lattice is studied by using an effective-field theory (EFT) with correlation. We propose an expression for the free energy within the EFT. The phase diagram is constructed in the temperature (T) and single-ion anisotropy amplitude (D) plane. The first-order transition line is obtained by Maxwell construction (comparison between free energies). Our results predict first-order transitions at low temperatures and large anisotropy strengths, which correspond in the phase diagram to the existence of a tricritical point (TCP). We compare our results with mean-field approximation (MFA), that show a qualitative correct behavior for the phase diagram.  相似文献   

14.
Using mean-field theory, we have studied the effect of quantum transverse anisotropies with RKKY interaction on the multi-layer transition and magnetic properties of the spin-1 Blume--Capel model of a system formed by two magnetic multi-layer materials, of different thicknesses, separated by a non-magnetic spacer of thickness M. It is found that the multilayer magnetic order--disorder transition temperature depends strongly on the value of the transverse anisotropy. The multilayer transition temperature decreases when increasing the transverse anisotropy. Furthermore, there exists a critical quantum transverse anisotropy ΔxL beyond which the separate transitions occur in the two magnetic layers. The critical transverse anisotropy ΔxL decreases (increases) on increasing the non-magnetic spacer of thickness M (on increasing the crystal field), and ΔxL undergoes oscillations as a function of the Fermi level.  相似文献   

15.
We study the spin-1 Blume–Capel model under a random crystal field in the tridimensional semi-infinite case. This has been done by using the real-space renormalization group approximation and specifically the Migdal–Kadanoff technique. Interesting results are obtained, which tell us that the randomness destroys the first order phase transitions and only those of the second order occur. We give the list of nine fixed points and their topology describing the surface critical behavior. Five new types of phase diagram are found with a rich variety of phase transitions, in accordance with the values of the bulk and surface probabilities and the ratios linking bulk and surface interactions.  相似文献   

16.
Using Monte Carlo simulations with the Metropolis algorithm, we have studied the influence of crystal-field interaction on the critical behavior of magnetic spin-1 Ising film on a cubic lattice structure. The phase diagrams in the (kBTc/J,R=Js/J)(kBTc/J,R=Js/J) plane are obtained for different values of the crystal-field interaction. We found that the special point Rsp(Rc)Rsp(Rc), at which the critical temperature is independent of the film thickness N, is independent of the crystal-field interaction and that the system may exhibit a tricritical behavior.  相似文献   

17.
The bond dilution effects are investigated for the spin-1 Blume–Capel model on the Bethe lattice by using the exact recursion relations. The bilinear interaction parameter is either turned on ferromagnetically with probability p or turned off with probability 1-p between the nearest-neighbor spins. The thermal variations of the order-parameters are studied in detail to obtain the phase diagrams on the possible planes spanned by the temperature(T), probability(p) and crystal field(D) for the coordination numbers q = 3, 4, and 6. The lines of the second-order phase transitions,T_c-lines, combined with the first-order ones, T_t-lines, at the tricritical points(TCP) are always found for any p and q on the(T, D)-planes. It is also found that the model gives only T_c-lines, Tc-lines combined with the T_t-lines at the TCP's and only Tt-lines with the consecutively decreasing values of D on the(T, p)-planes for all q.  相似文献   

18.
We calculate the dynamic phase transition (DPT) temperatures and present the dynamic phase diagrams in the kinetic spin-5/2 Blume–Capel model under the presence of a time-dependent oscillating external magnetic field. First, we employ the Glauber transition rates to construct the mean-field dynamic equation. Then, we study the time variation of the average magnetization to find the phases in the system. We also investigate the behaviour of the dynamic magnetization to characterize the nature (continuous and discontinuous) of transition and to obtain the DPT points. We present the dynamic phase diagrams in two different planes. The phase diagrams include the ferromagnetic-5/2 (f5/2), the ferromagnetic-1/2 (f1/2) and paramagnetic (p) fundamental phases. In addition to these fundamental phases, we find 10 mixed phases, depending on the interaction parameters. The phase diagrams display many special points, such as a dynamic tricritical point, a double critical end point, a triple point and a quadruple point.  相似文献   

19.
Employing a mean-field approach, we study the stationary states of the kinetic spin-5/2 Blume–Emery–Griffiths (BEG) model under the presence of a time-varying (sinusoidal) magnetic field by using the Glauber-type stochastic dynamics. We employ the Glauber transition rates to construct the set of dynamic mean-field equations. We investigate the time variation in average order parameters to find the phases in the system, and the thermal behavior of the dynamic order parameters to characterize the nature (continuous or discontinuous) of the dynamic phase transtions and to the dynamic phase transition temperature. The dynamic phase diagrams are presented in three different planes. The phase diagrams contain the ferromagnetic-5/2, the ferromagnetic-3/2, the ferromagnetic-1/2, the ferroquadrupolar, and disordered fundamental phases. They also include the nine coexisting or mixed phases composed of binary and ternary combinations of fundamental phases that strongly depend on the interaction parameters. The phase diagrams display the critical end point, double critical end point, triple point, quadruple point, and one, two, or three special points and the dynamic tricritical point that depends on the interaction parameters.  相似文献   

20.
The two-dimensional Blume–Capel model with free surfaces where a surface field \(H_1\) acts and the “crystal field” (controlling the density of the vacancies) takes a value \(D _s\) different from the value \(D\) in the bulk, is studied by Monte Carlo methods. Using a recently developed finite size scaling method that studies thin films in a \(L \times M\) geometry with antisymmetric surface fields \((H_L=-H_1)\) and keeps a generalized aspect ratio \(c = L^2/M\) constant, surface phase diagrams are computed for several typical choices of the parameters. It is shown that both second order and first order wetting transitions occur, separated by tricritical wetting behavior. The special role of vacancies near the surface is investigated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号