首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new pH and metal ion-responsive BODIPY-based fluorescent probe with an aza crown ether subunit has been synthesized via condensation of 4-(1,4,7,10-tetraoxa-13-aza-cyclopentadec-13-yl)-benzaldehyde with the appropriate 1,3,5,7-tetramethyl substituted boron dipyrromethene moiety. Steady-state and time-resolved fluorometries have been used to study the spectroscopic and photophysical characteristics of this probe in various solvents. The fluorescence properties of the dye are strongly solvent dependent: increasing the solvent polarity leads to lower fluorescence quantum yields and lifetimes, and the wavelength of maximum fluorescence emission shifts to the red. The Catalan solvent scales are found to be the most suitable for describing the solvatochromic shifts of the fluorescence emission. Fluorescence decay profiles of the dye can be described by a single-exponential fit in nonprotic solvents, whereas two decay times are found in alcohols. Protonation as well as complex formation with several metal ions are investigated in acetonitrile as solvent via fluorometric titrations. The aza crown ether dye undergoes a reversible (de)protonation reaction (pKa = 0.09) and shows a approximately 50 nm blue shift in the excitation spectra and a 10-fold fluorescence increase upon protonation. The compound also forms 1:1 complexes with several metal ions (Li(+), Na(+), Mg(2+), Ca(2+), Ba(2+), Zn(2+)), producing large blue shifts in the excitation spectra and significant cation-induced fluorescence amplifications.  相似文献   

2.
BODIPY-based hydroxyaryl derivatives as fluorescent pH probes   总被引:3,自引:0,他引:3  
[structures: see text] Seven new 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes with phenolic or naphtholic subunits on position 8 and with substituents having different electron driving forces on positions 3 and 5 were synthesized. Their absorption and steady-state fluorescence properties were investigated as a function of solvent. The novel compounds, with the exception of 4,4-difluoro-8-(4-hydroxyphenyl)-3,5-bis-(4-methoxyphenyl)-4-bora-3a,4a-diaza-s-indacene, are characterized by absorption maxima in the range 493-515 nm and small (400-600 cm(-1)) Stokes shifts. The exceptional dye has absorption maxima in the 570-580 nm region and fluorescence emission maxima around 610-620 nm, depending on the solvent. In aqueous solution, the dyes show a large fluorescent enhancement upon increasing the acidity of the solution. They can be used in aqueous solution as fluorescent pH probes excitable with visible light, with pKa values ranging from 7.5 to 9.3, depending on the substitution pattern on positions 3, 5, and 8.  相似文献   

3.
A visible-light-excitable, ratiometric, brightly fluorescent pH indicator for measurements in the pH range 5-7 has been designed and synthesized by conjugatively linking the BODIPY fluorophore at the 3-position to the pH-sensitive ligand imidazole through an ethenyl bridge. The probe is available as cell membrane permeable methyl ester 8-(4-carbomethoxyphenyl)-4,4-difluoro-3-[2-(1H-imidazol-4-yl)ethenyl]-1,5,7-trimethyl-3a,4a-diaza-4-bora-s-indacene (I) and corresponding water-soluble sodium carboxylate, sodium 8-(4-carboxylatophenyl)-4,4-difluoro-3-[2-(1H-imidazol-4-yl)ethenyl]-1,5,7-trimethyl-3a,4a-diaza-4-bora-s-indacene (II). The fluorescence quantum yield Φ(f) of ester I is very high (0.8-1.0) in the organic solvents tested. The fluorescence lifetime (ca. 4 ns) of I in organic solvents with varying polarity/polarizability (from cyclohexane to acetonitrile) is independent of the solvent with a fluorescence rate constant k(f) of 2.4×10(8) s(-1). Probe I is readily loaded in the cytosol of live cells, where its high fluorescence intensity remains nearly constant over an extended time period. Water-soluble indicator II exhibits two acid-base equilibria in aqueous solution, characterized by pK(a) values of 6.0 and 12.6. The Φ(f) value of II in aqueous solution is high: 0.6 for the cationic and anionic forms of the imidazole ligand, and 0.8 for neutral imidazole. On protonation-deprotonation in the near-neutral pH range, UV/Vis absorption and fluorescence spectral shifts along with isosbestic and pseudo-isoemissive points are observed. This dual-excitation and dual-emission pH indicator emits intense green-yellow fluorescence at lower pH and intense orange fluorescence at higher pH. The influence of ionic strength and buffer concentration on the absorbance and steady-state fluorescence of II has also been investigated. The apparent pK(a) of the near-neutral acid-base equilibrium determined by spectrophotometric and fluorometric titration is nearly independent of the added buffer and salt concentration. In aqueous solution in the absence of buffer and in the pH range 5.20-7.45, dual exponential fluorescence decays are obtained with decay time τ(1)=4.3 ns for the cationic and τ(2)=3.3 ns for the neutral form of II. The excited-state proton exchange of II at near-neutral pH becomes reversible on addition of phosphate (H(2)PO(4)(-)/HPO(4)(2-)) buffer, and a pH-dependent change of the fluorescence decay times is induced. Global compartmental analysis of fluorescence decay traces collected as a function of pH and phosphate buffer concentration was used to recover values of the deactivation rate constants of the excited cationic (k(01)=2.4×10(8) s(-1)) and neutral (k(02)=3.0×10(8) s(-1)) forms of II.  相似文献   

4.
Synthesis of a new coumarin-triazole-based dye and its photophysical parameters such as absorption, fluorescence emission, and fluorescence quantum yield were investigated. Studies have shown that the present dye has symmetry with a mirror image, especially in the ethanol solvent, with respect to the absorption and fluorescence spectra. As a result of the UV-vis and fluorescence spectroscopy techniques used, it was determined that absorption and emission spectra were shifted to the red with increasing solvent polarity. In addition, the spectral data of the synthesized compound exhibited that the stokes shifts are small, usually less than 50 nm, and the quantum yields are significantly high. In accordance with the results obtained, it can be stated that this novel dye synthesized here can offer an insight into application in sensor applications as analytical or biosensors, optoelectronic devices, and medicine industry.  相似文献   

5.
A novel red-emission boron-dipyrromethene(BODIPY) dye with a pyrrole ring was synthesized simply via one-pot reaction. The spectral properties of it were investigated under the conditions of different solvents. The results show that the as-prepared BODIPY dye is extremely sensitive to solvent polarity, and the fluorescent emission enhances with the decrease of solvent polarity. In aqueous buffer, the addition of bovine serum albumin leads to a ratiometric change in absorption spectra with an association constant of 1.16×10^6 L/mol. Meanwhile, the fluorescence emission increases greatly at 622 nm but changes slightly at 575 nm. The response time is very short(less than 3 min), and the changes of color can be noticed by naked eyes. Bovine serum albumin can be detected by this ratiometric fluorescence probe, but other proteins or enzymes cannot be detected by this method, which indicates that this novel dye has high selectivity towards bovine serum albumin. The reason is that bovine serum albumin has suitable hydro- phobic cavities for binding with the dye. In addition, the dye molecule can penetrate cell membrane easily and make a fast fluorescent stain, which makes it a potential probe for living-cell fluorescence imaging.  相似文献   

6.
Solvent polarity plays an important role in electrospray ionization-mass spectrometry (ESI-MS), one of the most widely used analytical methods for biochemistry. To have a comprehensive understanding of how solvent polarity affects ESI-MS measurements, we systematically investigated the polarity change in the ESI plume formed from an ethanol solution using laser-induced fluorescence (LIF) spectroscopy. Two solvatochromic dyes (i.e., dyes whose fluorescence emission is sensitive to solvent polarity), Nile red and DCM (4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran), were used as probes. The peak emission wavelengths of these two dyes exhibited significant red shifts (8–12 nm) when the measuring spot was moved away from the spray tip and in radial direction in the plume, indicating a dramatic polarity change during shrinking of the droplets. The emission intensities were also measured with a polarity-insensitive dye as a reference. The results are consistent with the peak wavelength measurements. Two key mechanisms responsible for the change of solvent polarity in the plume were considered, water entrainment from the surrounding air and solvent evaporation. Furthermore, quantitative analysis of the solvent polarity change was performed by using the Lippert-Mataga polarity parameter Δf. The value of Δf reached 0.305–0.307 at the periphery of the ESI plume, which means that the solvent polarity in the smaller droplet is close to that of a mixture of 30% water and 70% ethanol (Δf = 0.307), even though the bulk solvent was ethanol containing less than 1% water as an impurity.  相似文献   

7.
We report on the emission spectra and emission quantum yields of a newly synthesized hypocrellin dye, Z‐demethoxy‐ 2,3‐ethylenediamino hypocrellin B (EDAHB), and its parent HB in different solvents of varying polarity. Our results demonstrate that EDAHB is one of the few dyes that exhibit highly solvent polarity‐dependent fluorescence in the useful region (680–730 nm). Therefore, it offers some applications in the biomedical field as a fluorescent probe molecule. The solvatochromic effect of EDAHB is proposed to be due to a distinct change in the dipole moment of the dye on excitation. A photoinduced intramolecular proton transfer and a photoinduced intramolecular electron transfer process are considered relevant for the fluorescence properties of HB and EDAHB, respectively.  相似文献   

8.
The spectroscopic characteristics of adducts derived from the covalent binding of the carcinogen 2-aminofluorene to the C8 position of deoxyguanosine [N-(deoxyguanosin-8-yl)-2-amino-fluorene, dGuo-C8-AF], and from an adduct of similar structure formed with the synthetic polynucleotide poly(dG-dC).poly(dG-dC), were investigated. At 77 K both adducts are characterized by well-defined and rather narrow fluorescence emission spectra with maxima at 370 and 390 nm characteristic of the aromatic, monomolecular 2-aminofluorene (AF) residue. In contrast, at room temperature, the fluorescence is characterized by a broad, structureless emission band with a maximum at 460 nm in aqueous mixtures, shifting to 415 nm in solvents of lower polarity (100% propanol); the maxima are located at intermediate wavelengths in solutions of different propanol/water compositions, and this emission is attributed to an excited state complex (exciplex). The fluorescence quantum yield decreases when either the solvent polarity or the temperature are increased, varying from 5.4% (100% propanol) to 0.04-0.05% (100% H2O). The fluorescence decay profiles of dGuo-C8-AF adducts (measured at the National Synchrotron Light Source facility at the Brookhaven National Laboratory) can be roughly, but not exactly, modeled in terms of two exponential decay components in the range of about 0.3-1.0 ns with the propanol concentration greater than 60%; at lower propanol concentrations, a single short lifetime is observed and in 100% water solutions its value is 0.08 ns. The shorter lifetime, favored in solvent mixtures of higher polarities, is attributed to an exciplex with significant charge-transfer character.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The syntheses and spectral properties of three new and highly fluorescent solvent polarity probes are described. They are found to be extremely sensitive to solvent polarity in that spectral red shifts in both absorption and fluorescence spectra occur upon increasing solvent polarity. Excitation and emission data of the dyes in a set of different polar solvents are given. The emission data are compared with the standard ETN values of solvent polarity and a linear correlation is obtained over a wide range. The origin of the unusual solvatochromic properties is discussed in terms of the resonance structures of this new group of molecular probes. Their outstanding features include high spectral sensitivity to polarity, high molar absorptivities, high fluorescence quantum yields, longwave excitation and emission, insignificant quenching by oxygen, and a sufficient stability in aqueous solution. Therefore, the new probes are considered to be advantageous over other polarity probes used so far in probing biochemical and biological systems.  相似文献   

10.
《Mendeleev Communications》2022,32(2):268-270
New chalcones with 4-[bis(2-hydroxyethyl)amino] phenyl fragment were obtained from 4-[bis(2-acetoxyethyl) amino]- benzaldehyde by the Claisen–Schmidt reaction. From their UV-VIS absorption and emission spectra, optical band gap values were calculated based on the Stokes shifts as well as the molar absorption coefficients and fluorescence quantum yields were estimated. The dependence of the absorption and emission maxima on solvent polarity and pH was evaluated.  相似文献   

11.
The fluorescence kinetics of the nitrobenzoxadiazole (NBD) chromophore were studied at low concentrations in solvents with varying polarity and hydrogen-bonding donor strength. The emission decay was essentially single exponential in all solvents studied. While the absorption and fluorescence solvatochromism is determined largely by the solvent polarity, the S1 state decay kinetics are strongly modulated by the solvent H-bonding capacity. The NBD emission lifetime, generally approximately 7-10 ns in the aprotic solvents, is reduced to 0.933 ns in water. The solvent deuterium isotope effect on the fluorescence decay is substantial in D2O and in methanol-d4, but is insignificant in DMSO-d6. These results are consistent with acceleration of S1----S0 internal conversion through an accepting vibrational mode created by intermolecular hydrogen-bonding of the NBD chromophore to an H atom-donating solvent. This work bears on the practically of using NBD as a fluorophore in assays for estrogen and progesterone receptors.  相似文献   

12.
A study was made on the spectroscopic properties of 4-hexylresorcinol (4HR) in several solvents at room temperature. Absorption and emission spectra were slightly affected by solvent polarity. Stokes' shifts were small (approximately 3000 cm(-1)) and the fluorescence quantum yields varied between 0.05 and 0.68, depending on the solvent. The spectral shifts were correlated with different solvent scales. Multiple regression analysis indicates that both non-specific solute-solvent interactions as well as specific solute-solvent interactions (such as hydrogen bonding) play an important role in the position of the Stokes' shift and on the fluorescence quantum yield in the solvents under study.  相似文献   

13.
Spectroscopic properties of Nile red (NR) in organic solvents, binary solvent mixtures have been studied. Remarkable shifts in the emission band positions have been observed as a function of the polarity of the medium. In solvent mixtures, these shifts can be explained by the process of specific solvation known as dielectric enrichment. The displacement of the fluorescence band was also measured as a function of temperature to obtain the thermochromic shifts (15 cm(-1) K(-1) in methyltetrahydrofuran and 13.8 cm(-1) K(-1) in butanol). Excited state dipole moments were calculated from these shifts.  相似文献   

14.
Neutral red is a lysosomal probe and a biological pH indicator. In aqueous solutions, the protonated (NRW) and neutral (NR) forms of monomeric neutral red exhibit distinct absorption maxima (535 and 450 nm, respectively) but have the same fluorescence with a maximum at 637 nm and a quantum yield of 0.02. The similarity of the fluorescence spectra at acidic and basic pH suggests deprotonation of cationic species in the first singlet excited state. The NR fluorescence strongly depends on the solvent polarity as shown by addition of increasing amounts of water to pure dioxane, which gradually shifts the fluorescence maximum from 540 nm in pure dioxane to 637 nm in water. The fluorescence quantum yield increases from 0.17 in dioxane to 0.3 upon addition of 7% water and then decreases, reaching 0.02 in pure water. Immediately after incubation of human skin fibroblasts with neutral red, excitation with 435 nm light produces a fluorescence whose maximum is recorded at 575 nm. This fluorescence is located in the perinuclear region and originates from large fluorescent intracytoplasmic spots, suggesting staining of the endoplasmic reticulum-Golgi complex. At longer times, this fluorescence is shifted to 606 nm, suggesting slow diffusion of the lysosomotropic dye toward the more hydrated and acidic interior of ly-sosomes. Addition of a lysosomotropic detergent to cells previously incubated with neutral red shifts the fluorescence to the blue. Thus, in complex biological systems, this probe cannot be a good pH indicator but is a very sensitive probe of lysosomal rnicroenvironrnents.  相似文献   

15.
Curcumin, the main yellow bioactive component of turmeric, has recently acquired attention by chemists due its wide range of potential biological applications as an antioxidant, an anti-inflammatory, and an anti-carcinogenic agent. This molecule fluoresces weakly and poorly soluble in water. In this detailed study of curcumin in thirteen different solvents, both the absorption and fluorescence spectra of curcumin was found to be broad, however, a narrower and simple synchronous fluorescence spectrum of curcumin was obtained at Δλ=10-20 nm. Lippert-Mataga plot of curcumin in different solvents illustrated two sets of linearity which is consistent with the plot of Stokes' shift vs. the ET30. When Stokes's shift in wavenumber scale was replaced by synchronous fluorescence maximum in nanometer scale, the solvent polarity dependency measured by λSFSmax vs. Lippert-Mataga plot or ET30 values offered similar trends as measured via Stokes' shift for protic and aprotic solvents for curcumin. Better linear correlation of λSFSmax vs. π* scale of solvent polarity was found compared to λabsmax or λemmax or Stokes' shift measurements. In Stokes' shift measurement both absorption/excitation as well as emission (fluorescence) spectra are required to compute the Stokes' shift in wavenumber scale, but measurement could be done in a very fast and simple way by taking a single scan of SFS avoiding calculation and obtain information about polarity of the solvent. Curcumin decay properties in all the solvents could be fitted well to a double-exponential decay function.  相似文献   

16.
The effects of solvent pH on spectral properties and fluorescence decay kinetics were investigated in order to characterize the microenvironment of meso-tetraphenylporphine tetrasulphonate (TPPS4) taken up by cells. Steady-state absorption and fluorescence spectra of TPPS4 in buffer solutions of different pH were used to identify a ring protonated species at pH less than or equal to 4. This dictation could also be distinguished from the unprotonated form by its altered fluorescence decay time (3.5 vs. 11.4 ns). In addition, time-resolved spectroscopy gave some evidence of a monocationic species existing at pH 6-9. This was concluded from the occurrence of another component with a decay time of 5 ns. Measurements of the spectral and kinetic properties of the fluorescence emission of single epithelial cells (RR1022) incubated with TPPS4 indicated that the sensitizer was mainly localized in a microenvironment with a pH of 5, a value which occurs intracellularly only within lysosomes. Cells kept in the dark exhibited the characteristic spectra of both the dication and the neutral form. The fluorescence decay showed two components with decay times of 2.6 ns and 10.6 ns. Irradiation of the cells changed the decay times to 4.6 ns and 13.4 ns and the dication fluorescence emission peak vanished, which is in accordance with the results obtained from buffer solutions at pH greater than or equal to 6. Therefore, we deduce that the photodynamic action leads to a rupture of the lysosomes and that the sensitizer is released into the surrounding cytoplasm.  相似文献   

17.
Time-resolved fluorescence of 1,8-anilinonaphthalene sulfonate (1,8-ANS) fluorescent probe bound to intact human oxyhemoglobin (HbO2) is investigated. Fluorescence emission spectra of 1,8-ANS in a potassium buffer solution (pH 7.4) of HbO2 undergo a substantial blue shift during first 6 ns after pulsed optical excitation at 337.1 nm. Nonexponential fluorescence kinetics of 1,8-ANS in the HbO2 solution are studied by the decay time distribution and conventional multiexponential analyses for a set of emission wavelength range of lambdaem = 455-600 nm. These fluorescence decays contain components with mean decay times of <0.5 ns, 3.1-5.5 ns, and 12.4-15.1 ns with spectrally-dependent relative contributions. The shortest decay component is assigned to free 1,8-ANS molecules in the bulk buffer environment, whereas the two longer decay components are assigned to two types of binding sites of 1,8-ANS in the HbO2 molecule presumably differing by polarity and accessibility to water molecules. The results represent the first experimental evidence of heterogeneous binding of 1,8-ANS to intact human oxyhemoglobin.  相似文献   

18.
A series of p-nitro-p'-alkoxy(OR)-substituted (E,E,E)-1,6-diphenyl-1,3,5-hexatrienes (1a, R = Me; 1b, R = Et; 1c, R = n-Pr; 1d, R = n-Bu) were prepared. The absorption and fluorescence spectra in solution were almost independent of the alkoxy chain length. The absorption maximum showed only a small dependence on the solvent polarity, whereas the fluorescence maximum red-shifted largely as the polarity increased. The solid-state absorption and fluorescence spectra were red-shifted relative to those in low polar solvents and were clearly dependent on the alkoxy chain length. The fluorescence maxima for the crystals of 1b and 1d were observed at 635-650 nm, which were red-shifted by 40-50 nm relative to those for 1a and 1c. The Stokes shifts were all relatively small (3000-3500 cm-1). For all four compounds, the fluorescence decay curves in the solid state were able to be analyzed by single-exponential fitting to give the lifetimes of 1.1-1.3 ns. This indicates that the emission of 1a-d is not originated from an excimer or molecular aggregates, but from only one emitting monomeric species. The fluorescence quantum yields of 1a-d were considerably high compared with the values for organic solids, which is consistent with their monomeric origin of emission. Single-crystal X-ray structure analyses of 1a, 1c, and 1d showed that the crystal packing was dependent on the alkoxy chain length. The crystals of 1a and 1c had herringbone structure, whereas that of 1d had pi-stacked structure. Strong pi-pi interaction in the crystal of 1d would be the cause of the spectral red shifts relative to those for 1a and 1c. No observation of excimer fluorescence from crystal 1d can be attributed to the limited overlap between the pi-planes of the molecules due to its "slipped-parallel" structure.  相似文献   

19.
The new 3-hydroxychromone derivative 2-(6-diethylaminobenzo[b]furan-2-yl)-3-hydroxychromone (FA) displays a dramatic solvent-dependent transformation of fluorescence spectra in the range of low-polarity solvents. The two well-separated emission bands change their relative intensities so that the short-wavelength band being of a very low intensity in hexane becomes dominant in the more polar ethyl acetate and trichloromethane. We suggest the participation in this effect of excited-state intramolecular proton transfer, which is characteristic for other 3-hydroxychromone and 3-hydroxyflavone derivatives, in the range of solvents of much higher polarities. Because of these unique properties, a number of spectroscopic parameters (positions of absorption and two fluorescence maxima, the ratio of their intensities and the fluorescence quantum yield) can be measured in this solvent range with multiparametric analysis of the data. In terms of solvent polarity, the shifts in both emission bands and their intensity ratio demonstrate a good correlation with empirical polarity scales ETN, Py and SPP, while the absorption spectra reveal some deviations for the tested oxygen-containing solvent molecules. A good cross-correlation is observed between fluorescence spectral shifts and the ratio of band intensities. The latter provides the means for a dramatic amplification of solvent response. Thus, a new approach for ultrasensitive scaling and probing the solvent polarity in the low-polararity range can be suggested. It involves very simple ratiometric measurements at two emission bands and can be posed for a variety of applications. We present examples of these applications for distinguishing of polarities between methylated benzene derivatives, for quantitative assay of polar impurities in low-polar solvents and for detection of the changes of solvent polarity as a function of temperature.  相似文献   

20.
碳量子点作为一种新兴的荧光纳米材料,具有粒径分布均匀、光稳定性好、激发-发射波长可调控、表面可修饰等优良的性质,兼具低毒性、生物相容性好等优点,在分析检测和生物成像等领域展现出广阔的应用前景。而蚕砂是家蚕的干燥粪便,简单易得。利用蚕砂作为碳量子点制备原料,采用微波合成的方法制备得到了一种平均水合粒径为4.86 nm,含氮、硫修饰的碳量子点材料,可作为针对激发波长、pH、金属离子浓度、温度及溶剂极性的变化有着显著响应特性的碳量子点型荧光探针。该探针的荧光最大发射波长随激发波长或pH的增加而红移;荧光强度随温度或pH的降低而增加;随着金属离子,特别是铜离子的加入而逐渐降低,并随着EDTA络离子的加入而逐渐回复。在多种溶剂中该探针均具有较好的溶解度,当换用不同极性的溶剂时,随着溶剂极性的增加荧光发射波长逐渐红移。荧光性质随多重环境参数变化为该碳量子点在未来的生物检测和成像领域提供了广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号