首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The zero-one integer programming problem and its special case, the multiconstraint knapsack problem frequently appear as subproblems in many combinatorial optimization problems. We present several methods for computing lower bounds on the optimal solution of the zero-one integer programming problem. They include Lagrangean, surrogate and composite relaxations. New heuristic procedures are suggested for determining good surrogate multipliers. Based on theoretical results and extensive computational testing, it is shown that for zero-one integer problems with few constraints surrogate relaxation is a viable alternative to the commonly used Lagrangean and linear programming relaxations. These results are used in a follow up paper to develop an efficient branch and bound algorithm for solving zero-one integer programming problems.  相似文献   

2.
This paper describes the details of a successful application where an integer programming and evolutionary hybrid algorithm was used to solve a bus driver duty optimization problem. The task is NP-hard, therefore theoretically optimal solutions can only be calculated for very small problem instances. Our aim is to obtain solutions of good quality within reasonable time limits. We first applied an integer programming approach to a set partitioning problem. The model was solved with a column generation algorithm in a branch and bound scheme. In order to solve larger real-life problems, we have combined the integer programming method with a greedy 1+1 steady state evolutionary algorithm. The resulting hybrid algorithm was capable of providing near-optimal solutions within reasonable timescales to larger instances of the bus driver scheduling problem. We present the results and running times of our algorithm in detail, as well as possible directions of future improvements.  相似文献   

3.
边界约束非凸二次规划问题的分枝定界方法   总被引:2,自引:0,他引:2  
本文是研究带有边界约束非凸二次规划问题,我们把球约束二次规划问题和线性约束凸二次规划问题作为子问题,分明引用了它们的一个求整体最优解的有效算法,我们提出几种定界的紧、松驰策略,给出了求解原问题整体最优解的分枝定界算法,并证明了该算法的收敛性,不同的定界组合就可以产生不同的分枝定界算法,最后我们简单讨论了一般有界凸域上非凸二次规划问题求整体最优解的分枝与定界思想。  相似文献   

4.
The satisfiability problem in forms such as maximum satisfiability (MAX-SAT) remains a hard problem. The most successful approaches for solving such problems use a form of systematic tree search. This paper describes the use of a hybrid algorithm, combining genetic algorithms and integer programming branch and bound approaches, to solve MAX-SAT problems. Such problems are formulated as integer programs and solved by a hybrid algorithm implemented within standard mathematical programming software. Computational testing of the algorithm, which mixes heuristic and exact approaches, is described.  相似文献   

5.
We describe the development of fast heuristics and methodologies for congestion minimization problems in directional wireless networks, and we compare their performance with optimal solutions. The focus is on the network layer topology control problem (NLTCP) defined by selecting an optimal ring topology as well as the flows on it. Solutions to NLTCP need to be computed in near realtime due to changing weather and other transient conditions and which generally preclude traditional optimization strategies. Using a mixed-integer linear programming formulation, we present both new constraints for this problem and fast heuristics to solve it. The new constraints are used to increase the lower bound from the linear programming relaxation and hence speed up the solution of the optimization problem by branch and bound. The upper and lower bounds for the optimal objective function to the mixed integer problem then serve to evaluate new node-swapping heuristics which we also present. Through a series of tests on different sized networks with different traffic demands, we show that our new heuristics achieve within about 0.5% of the optimal value within seconds.  相似文献   

6.
It is well known that the linear knapsack problem with general integer variables (LKP) is NP-hard. In this paper we first introduce a special case of this problem and develop an O(n) algorithm to solve it. We then show how this algorithm can be used efficiently to obtain a lower bound for a general instance of LKP and prove that it is at least as good as the linear programming lower bound. We also present the results of a computational study that show that for certain classes of problems the proposed bound on average is tighter than other bounds proposed in the literature.  相似文献   

7.
This contribution gives an overview on the state-of-the-art and recent advances in mixed integer optimization to solve planning and design problems in the process industry. In some case studies specific aspects are stressed and the typical difficulties of real world problems are addressed. Mixed integer linear optimization is widely used to solve supply chain planning problems. Some of the complicating features such as origin tracing and shelf life constraints are discussed in more detail. If properly done the planning models can also be used to do product and customer portfolio analysis. We also stress the importance of multi-criteria optimization and correct modeling for optimization under uncertainty. Stochastic programming for continuous LP problems is now part of most optimization packages, and there is encouraging progress in the field of stochastic MILP and robust MILP. Process and network design problems often lead to nonconvex mixed integer nonlinear programming models. If the time to compute the solution is not bounded, there are already a commercial solvers available which can compute the global optima of such problems within hours. If time is more restricted, then tailored solution techniques are required.  相似文献   

8.
This paper presents a three-stage optimization algorithm for solving two-stage deviation robust decision making problems under uncertainty. The structure of the first-stage problem is a mixed integer linear program and the structure of the second-stage problem is a linear program. Each uncertain model parameter can independently take its value from a real compact interval with unknown probability distribution. The algorithm coordinates three mathematical programming formulations to iteratively solve the overall problem. This paper provides the application of the algorithm on the robust facility location problem and a counterexample illustrating the insufficiency of the solution obtained by considering only a finite number of scenarios generated by the endpoints of all intervals. This work was supported by the National Science Foundation through Grant DMI-0200162.  相似文献   

9.
Using constraint partitioning and variable elimination, the authors have recently developed an efficient algorithm for solving linear goal programming problems. However, many goal programs require some or all of the decision variables to be integer valued. This paper shows how the new partitioning algorithm can be extended with a modified branch and bound strategy to solve both pure and mixed type integer goal programming problems. A potential problem in combining the partitioning algorithm and the branch and bound search scheme is presented and resolved.  相似文献   

10.
吴瀛峰 《运筹与管理》2012,21(2):162-167
本文针对高压开关产品的装配线提出一个实际的装配过程优化问题:高压开关产品的装配过程优化问题。该问题是在传统的空间布局问题中,加入了装配线工艺流程约束,是一类新的优化问题。本文为该问题建立了整数规划模型,并为该模型开发了启发式算法。然后以ZF11-252产品的装配过程为例,采用启发式算法求解模型。  相似文献   

11.
This paper gives specific computational details and experience with a group theoretic integer programming algorithm. Included among the subroutines are a matrix reduction scheme for obtaining group representations, network algorithms for solving group optimization problems, and a branch and bound search for finding optimal integer programming solutions. The innovative subroutines are shown to be efficient to compute and effective in finding good integer programming solutions and providing strong lower bounds for the branch and bound search.This research was supported in part by the U.S. Army Research Office (Durham) under contract no. DAHC04-70-C-0058. This paper is not an official National Bureau of Economic Research publication.  相似文献   

12.
An Exact Solution Method for Reliability Optimization in Complex Systems   总被引:2,自引:0,他引:2  
Systems reliability plays an important role in systems design, operation and management. Systems reliability can be improved by adding redundant components or increasing the reliability levels of subsystems. Determination of the optimal amount of redundancy and reliability levels among various subsystems under limited resource constraints leads to a mixed-integer nonlinear programming problem. The continuous relaxation of this problem in a complex system is a nonconvex nonseparable optimization problem with certain monotone properties. In this paper, we propose a convexification method to solve this class of continuous relaxation problems. Combined with a branch-and-bound method, our solution scheme provides an efficient way to find an exact optimal solution to integer reliability optimization in complex systems. This research was partially supported by the Research Grants Council of Hong Kong, grants CUHK4056/98E, CUHK4214/01E and 2050252, and the National Natural Science Foundation of China under Grants 79970107 and 10271073.  相似文献   

13.
In this paper we consider nonlinear integer optimization problems. Nonlinear integer programming has mainly been studied for special classes, such as convex and concave objective functions and polyhedral constraints. In this paper we follow an other approach which is not based on convexity or concavity. Studying geometric properties of the level sets and the feasible region, we identify cases in which an integer minimizer of a nonlinear program can be found by rounding (up or down) the coordinates of a solution to its continuous relaxation. We call this property rounding property. If it is satisfied, it enables us (for fixed dimension) to solve an integer programming problem in the same time complexity as its continuous relaxation. We also investigate the strong rounding property which allows rounding a solution to the continuous relaxation to the next integer solution and in turn yields that the integer version can be solved in the same time complexity as its continuous relaxation for arbitrary dimensions.  相似文献   

14.
This paper deals with chance constraints based reliability stochastic optimization problem in the series system. This problem can be formulated as a nonlinear integer programming problem of maximizing the overall system reliability under chance constraints due to resources. The assumption of traditional reliability optimization problem is that the reliability of a component is known as a fixed quantity which lies in the open interval (0, 1). However, in real life situations, the reliability of an individual component may vary due to some realistic factors and it is sensible to treat this as a positive imprecise number and this imprecise number is represented by an interval valued number. In this work, we have formulated the reliability optimization problem as a chance constraints based reliability stochastic optimization problem with interval valued reliabilities of components. Then, the chance constraints of the problem are converted into the equivalent deterministic form. The transformed problem has been formulated as an unconstrained integer programming problem with interval coefficients by Big-M penalty technique. Then to solve this problem, we have developed a real coded genetic algorithm (GA) for integer variables with tournament selection, uniform crossover and one-neighborhood mutation. To illustrate the model two numerical examples have been solved by our developed GA. Finally to study the stability of our developed GA with respect to the different GA parameters, sensitivity analyses have been done graphically.  相似文献   

15.
为了获得运输的规模经济效应,本文研究了一种考虑订单合并和货物转运的零担多式联运路径优化问题。首先,以总运输成本为目标函数,以网络中的运输工具容量、可以提供的运输工具最大数量、运输工具服务的关闭时间以及订单时间窗为约束,构建混合整数规划模型,在模型中允许多个订单进行合并运输并考虑运输过程中的转运成本。其次,由于多式联运路径优化问题是典型的NP-hard问题,为了快速求解该模型,开发了一种可以快速为该问题提供近似最优解和下界的列生成启发式算法。最后,生成并测试了大量算例,结果表明所开发的列生成启发式算法可以在较短的时间内提供高质量的近似最优解。文章所构建的模型和开发的列生成启发式算法可以为零担自营多式联运物流企业提供高效的决策支持。  相似文献   

16.
面向建筑集群的冷热电联供系统的设计和优化是实现建筑楼宇能源成本节约的重要途径。随机因素对该联供系统的优化决策,具有显著的影响。考虑建筑楼宇的能源需求为随机变量,构建随机混合整数规划模型,解决以最小化建筑楼宇总费用为目标时建筑集群冷热电联供系统的优化问题;其次,提出采用Benders多割平面方法求解多目标规划问题,从而寻找冷热电联供系统的设备配置和系统运行的Pareto最优决策;最后,通过实验验证了模型和算法的有效性。实验结果表明建筑集群在协作模式下,相比于非协作模式,具有更低的总费用。  相似文献   

17.
Managing shelf space is critical for retailers to attract customers and optimize profits. This article develops a shelf-space allocation optimization model that explicitly incorporates essential in-store costs and considers space- and cross-elasticities. A piecewise linearization technique is used to approximate the complicated nonlinear space-allocation model. The approximation reformulates the non-convex optimization problem into a linear mixed integer programming (MIP) problem. The MIP solution not only generates near-optimal solutions for large scale optimization problems, but also provides an error bound to evaluate the solution quality. Consequently, the proposed approach can solve single category-shelf space management problems with as many products as are typically encountered in practice and with more complicated cost and profit structures than currently possible by existing methods. Numerical experiments show the competitive accuracy of the proposed method compared with the mixed integer nonlinear programming shelf-space model. Several extensions of the main model are discussed to illustrate the flexibility of the proposed methodology.  相似文献   

18.
We consider the maximization of a multicommodity flow throughput in presence of constraints on the maximum number of paths to be used. Such an optimization problem is strongly NP-hard, and is known in the literature as the maximum routable demand fraction variant of the k-splittable flow problem. Here we propose an exact approach based on branch and bound rules and on an arc-flow mixed integer programming formulation of the problem. Computational results are provided, and a comparison with a standard commercial solver is proposed.  相似文献   

19.
The solution of large scale integer linear programming models is generally dependent, in some way, upon the branch and bound technique, which can be quite time consuming. This paper describes a parallel branch and bound algorithm which achieves super linear efficiency in solving integer linear programming models on a multiprocessor computer. The algorithm is used to solve the Haldi and IBM test problems as well as a system design model.  相似文献   

20.
In this research, two crucial optimization problems of berth allocation and yard assignment in the context of bulk ports are studied. We discuss how these problems are interrelated and can be combined and solved as a single large scale optimization problem. More importantly we highlight the differences in operations between bulk ports and container terminals which highlights the need to devise specific solutions for bulk ports. The objective is to minimize the total service time of vessels berthing at the port. We propose an exact solution algorithm based on a branch and price framework to solve the integrated problem. In the proposed model, the master problem is formulated as a set-partitioning problem, and subproblems to identify columns with negative reduced costs are solved using mixed integer programming. To obtain sub-optimal solutions quickly, a metaheuristic approach based on critical-shaking neighborhood search is presented. The proposed algorithms are tested and validated through numerical experiments based on instances inspired from real bulk port data. The results indicate that the algorithms can be successfully used to solve instances containing up to 40 vessels within reasonable computational time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号