首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Arginine deiminase (ADI) catalyzes the hydrolytic conversion of L-arginine to ammonia and L-citrulline as part of the energy-producing L-arginine degradation pathway. The chemical mechanism for ADI catalysis involves initial formation and subsequent hydrolysis of a Cys-alkylthiouronium ion intermediate. The structure of the Pseudomonas aeruginosa ADI-(L-arginine) complex guided the design of arginine analogs that might react with the ADIs to form inactive covalent adducts during catalytic turnover. One such candidate is L-canavanine, in which an N-methylene of L-arginine is replaced by an N-O. This substance was shown to be a slow substrate-producing O-ureido-L-homoserine. An in depth kinetic and mass spectrometric analysis of P. aeruginosa ADI inhibition by L-canavanine showed that two competing pathways are followed that branch at the Cys-alkylthiouronium ion intermediate. One pathway leads to direct formation of O-ureido-L-homoserine via a reactive thiouronium intermediate. The other pathway leads to an inactive form of the enzyme, which was shown by chemical model and mass spectrometric studies to be a Cys-alkylisothiourea adduct. This adduct undergoes slow hydrolysis to form O-ureido-L-homoserine and regenerated enzyme. In contrast, kinetic and mass spectrometric investigations demonstrate that the Cys-alkylthiouronium ion intermediate formed in the reaction of L-canavanine with Bacillus cereus ADI partitions between the product forming pathway (O-ureido-L-homoserine and free enzyme) and an inactivation pathway that leads to a stable Cys-alkylthiocarbamate adduct. The ADIs from Escherichia coli, Burkholderia mallei, and Giardia intestinalis were examined in order to demonstrate the generality of the L-canavanine slow substrate inhibition and to distinguish the kinetic behavior that defines the irreversible inhibition observed with the B. cereus ADI from the time controlled inhibition observed with the P. aeruginosa, E. coli, B. mallei, and G. intestinalis ADIs.  相似文献   

2.
cis-3-Chloroacrylic acid dehalogenase (cis-CaaD) catalyzes the hydrolytic dehalogenation of cis-3-haloacrylates to yield malonate semialdehyde. The enzyme processes other substrates including an allene (2,3-butadienoate) to produce acetoacetate. In the course of a stereochemical analysis of the cis-CaaD-catalyzed reaction using this allene, the enzyme was unexpectedly inactivated in the presence of NaBH(4) by the reduction of a covalent enzyme-substrate bond. Covalent modification was surprising because the accumulated evidence for cis-CaaD dehalogenation favored a mechanism involving direct substrate hydration mediated by Pro-1. However, the results of subsequent mechanistic, pre-steady state and full progress kinetic experiments are consistent with a mechanism in which an enamine forms between Pro-1 and the allene. Hydrolysis of the enamine or an imine tautomer produces acetoacetate. Reduction of the imine species is likely responsible for the observed enzyme inactivation. This is the first reported observation of a tautomerase superfamily member functioning by covalent catalysis. The results may suggest that some fraction of the cis-CaaD-catalyzed dehalogenation of cis-3-haloacrylates also proceeds by covalent catalysis.  相似文献   

3.
Thiamin diphosphate (ThDP) dependent enzymes perform crucial C-C bond forming and breaking reactions in sugar and amino acid metabolism and in biosynthetic pathways via a sequence of ThDP-bound covalent intermediates. A member of this superfamily, yeast pyruvate decarboxylase (YPDC) carries out the nonoxidative decarboxylation of pyruvate and is mechanistically a simpler ThDP enzyme. YPDC variants created by substitution at the active center (D28A, E51X, and E477Q) and on the substrate activation pathway (E91D and C221E) display varying activity, suggesting that they stabilize different covalent intermediates. To test the role of both rings of ThDP in YPDC catalysis (the 4'-aminopyrimidine as acid-base, and thiazolium as electrophilic covalent catalyst), we applied a combination of steady state and time-resolved circular dichroism experiments (assessing the state of ionization and tautomerization of enzyme-bound ThDP-related intermediates), and chemical quench of enzymatic reaction mixtures followed by NMR characterization of the ThDP-bound intermediates released from YPDC (assessing occupancy of active centers by these intermediates and rate-limiting steps). Results suggest the following: (1) Pyruvate and analogs induce active site asymmetry in YPDC and variants. (2) The rare 1',4'-iminopyrimidine ThDP tautomer participates in formation of ThDP-bound intermediates. (3) Propionylphosphinate also binds at the regulatory site and its binding is reflected by catalytic events at the active site 20 ? away. (4) YPDC stabilizes an electrostatic model for the 4'-aminopyrimidinium ionization state, an important contribution of the protein to catalysis. The combination of tools used provides time-resolved details about individual events during ThDP catalysis; the methods are transferable to other ThDP superfamily members.  相似文献   

4.
The utilization of CO2 as a carbon source for organic synthesis meets the urgent demand for more sustainability in the production of chemicals. Herein, we report on the enzyme‐catalyzed para ‐carboxylation of catechols, employing 3,4‐dihydroxybenzoic acid decarboxylases (AroY) that belong to the UbiD enzyme family. Crystal structures and accompanying solution data confirmed that AroY utilizes the recently discovered prenylated FMN (prFMN) cofactor, and requires oxidative maturation to form the catalytically competent prFMNiminium species. This study reports on the in vitro reconstitution and activation of a prFMN‐dependent enzyme that is capable of directly carboxylating aromatic catechol substrates under ambient conditions. A reaction mechanism for the reversible decarboxylation involving an intermediate with a single covalent bond between a quinoid adduct and cofactor is proposed, which is distinct from the mechanism of prFMN‐associated 1,3‐dipolar cycloadditions in related enzymes.  相似文献   

5.
Knowledge of the state of ionization and tautomerization of heteroaromatic cofactors when enzyme-bound is essential for formulating a detailed stepwise mechanism via proton transfers, the most commonly observed contribution to enzyme catalysis. In the bifunctional coenzyme, thiamin diphosphate (ThDP), both aromatic rings participate in catalysis, the thiazolium ring as an electrophilic covalent catalyst and the 4'-aminopyrimidine as acid-base catalyst involving its 1',4'-iminopyrimidine tautomeric form. Two of four ionization and tautomeric states of ThDP are well characterized via circular dichroism spectral signatures on several ThDP superfamily members. Yet, the method is incapable of providing information about specific proton locations, which in principle may be accessible via NMR studies. To determine the precise ionization/tautomerization states of ThDP during various stages of the catalytic cycle, we report the first application of solid-state NMR spectroscopy to ThDP enzymes, whose large mass (160,000-250,000 Da) precludes solution NMR approaches. Three de novo synthesized analogues, [C2,C6'-(13)C(2)]ThDP, [C2-(13)C]ThDP, and [N4'-(15)N]ThDP used with three enzymes revealed that (a) binding to the enzymes activates both the 4'-aminopyrimidine (via pK(a) elevation) and the thiazolium rings (pK(a) suppression); (b) detection of a pre-decarboxylation intermediate analogue using [C2,C6'-(13)C(2)]ThDP, enables both confirmation of covalent bond formation and response in 4'-aminopyrimidine ring's tautomeric state to intermediate formation, supporting the mechanism we postulate; and (c) the chemical shift of bound [N4'-(15)N]ThDP provides plausible models for the participation of the 1',4'-iminopyrimidine tautomer in the mechanism. Unprecedented detail is achieved about proton positions on this bifunctional coenzyme on large enzymes in their active states.  相似文献   

6.
Conformational dynamics is important for enzyme function. Which motions of enzymes determine catalytic efficiency and whether the same motions are important for all enzymes, however, are not well understood. Here we address conformational dynamics in glutaredoxin during catalytic turnover with a combination of NMR magnetization transfer, R(2) relaxation dispersion, and ligand titration experiments. Glutaredoxins catalyze a glutathione exchange reaction, forming a stable glutathinoylated enzyme intermediate. The equilibrium between the reduced state and the glutathionylated state was biochemically tuned to exchange on the millisecond time scale. The conformational changes of the protein backbone during catalysis were followed by (15)N nuclear spin relaxation dispersion experiments. A conformational transition that is well described by a two-state process with an exchange rate corresponding to the glutathione exchange rate was observed for 23 residues. Binding of reduced glutathione resulted in competitive inhibition of the reduced enzyme having kinetics similar to that of the reaction. This observation couples the motions observed during catalysis directly to substrate binding. Backbone motions on the time scale of catalytic turnover were not observed for the enzyme in the resting states, implying that alternative conformers do not accumulate to significant concentrations. These results infer that the turnover rate in glutaredoxin is governed by formation of a productive enzyme-substrate encounter complex, and that catalysis proceeds by an induced fit mechanism rather than by conformer selection driven by intrinsic conformational dynamics.  相似文献   

7.
Structure-activity relationships of enzymes can now be analyzed for the first time by the systematic alteration of protein structure. Recent developments in the chemical synthesis of DNA fragments and recombinant DNA technology enable the facile modification of proteins by highly specific mutagenesis of their genes. Kinetic analysis of the mutant enzymes combined with high-resolution structural data from protein X-ray crystallography allow direct measurements on the relationships between structure and function. In particular, the strength and nature of enzyme-substrate interactions and their detailed roles in catalysis and specificity can now be studied. We have developed such analysis of enzyme structure-function by site-directed mutagenesis of the tyrosyl-tRNA synthetase from Bacillus stearothermophilus, concentrating so far on the subtle role of hydrogen bonding in both substrate specificity and catalysis. We find that the energetics of tyrosine and ATP binding must be analyzed in terms of an exchange reaction with solvent water. Based on this idea and structural data, we have engineered an enzyme of improved enzyme-substrate affinity, and there thus appear to be real prospects of engineering proteins of new specificities, activities, and structural properties. We are also using protein engineering to gather direct information on the nature of enzyme catalysis. For example, we find the catalysis of formation of Tyr-AMP from Tyr and ATP is due largely to electrostatic and hydrogen bonding interactions that are stronger in the transition state than in the ground state—a “strain” mechanism rather than acid-base or covalent catalysis.  相似文献   

8.
Arginine deiminase (EC 3.5.3.6) catalyzes the hydrolysis of l-arginine to citrulline and ammonium ion, which is the first step of the microbial l-arginine degradation pathway. The deiminase conserves the active-site Cys-His-Asp motif found in several related enzymes that catalyze group-transfer reactions from the guanidinium center of arginine-containing substrates. For each of these enzymes, nucleophilic catalysis by the conserved Cys has been postulated but never tested. In this communication we report the results from rapid quench studies of single-turnover reactions carried out with recombinant Pseudomonas aeruginosa arginine deiminase and limiting [14C-1]l-arginine. The citrulline-formation and arginine-decay curves measured at 25 degrees C were fitted to yield apparent rate constants k = 3.6 +/- 0.1 s-1 and k = 4.2 +/- 0.1 s-1, respectively. The time course for the formation (k =13 s-1) and decay (k = 6.5 s-1) of 14C-labeled enzyme defined a kinetically competent intermediate. Under the same reaction conditions, the Cys406Ser mutant failed to form the 14C-labeled enzyme intermediate. These results, along with the recently reported enzyme X-ray structure (Galkin, A.; Kulakova, L.; Sarikaya, E.; Lim, K.; Howard, A.; Herzberg, O. J. Biol. Chem. 2004, 279, 14001-14008, evidence a reaction pathway in which l-arginine deimination proceeds via a covalent enzyme intermediate formed by ammonia displacement from the arginine guanidinum carbon by the active-site Cys406.  相似文献   

9.
Beta-amino acids are widely used building blocks in both natural and synthetic compounds. Aromatic beta-amino acids can be biosynthesized directly from proteinogenic alpha-amino acids by the action of MIO (4-methylideneimidazole-5-one)-based aminomutase enzymes. The uncommon cofactor MIO plays a role in both ammonia lyases and 2,3-aminomutases; however, the precise mechanism of the cofactor has not been resolved. Here we provide evidence that the electrophilic cofactor uses covalent catalysis through the substrate amine to direct the elimination and subsequent readdition of ammonia. A mechanism-based inhibitor was synthesized and the X-ray cocomplex structure was determined to 2.0 A resolution. The inhibitor halts the chemistry of the reverse reaction, providing a stable complex that establishes the mode of substrate binding and the importance of tyrosine 63 in the chemistry. The proposed mechanism is consistent with the biochemistry of aminomutases and ammonia lyases and provides strong support for an amine-adduct mechanism of catalysis for this enzyme class.  相似文献   

10.
The mechanism of hydrolysis of the nitrile (N-acetyl-phenylalanyl-2-amino-propionitrile, I) catalyzed by Gln19Glu mutant of papain has been studied by nanosecond molecular dynamics (MD) simulations. MD simulations of the complex of mutant enzyme with I and of mutant enzyme covalently attached to both neutral (II) and protonated (III) thioimidate intermediates were performed. An MD simulation with the wild-type enzyme.I complex was undertaken as a reference. The ion pair between protonated His159 and thiolate of Cys25 is coplanar, and the hydrogen bonding interaction S(-)(25).HD1-ND1(159) is observed throughout MD simulation of the mutant enzyme.I complex. Such a sustained hydrogen bond is absent in nitrile-bound wild-type papain due to the flexibility of the imidazole ring of His159. The nature of the residue at position 19 plays a critical role in the hydrolysis of the covalent thioimidate intermediate. When position 19 represents Glu, the imidazolium ion of His159-ND1(+).Cys25-S(-) ion pair is distant, on average, from the nitrile nitrogen of substrate I. Near attack conformers (NACs) have been identified in which His159-ImH(+) is positioned to initiate a general acid-catalyzed addition of Cys-S(-) to nitrile. Though Glu19-CO(2)H is distant from nitrile nitrogen in the mutant.I structure, MD simulations of the mutant.II covalent adduct finds Glu19-CO(2)H hydrogen bonded to the thioimide nitrogen of II. This hydrogen bonded species is much less stable than the hydrogen bonded Glu19-CO(2)(-) with mutant-bound protonated thioimidate (III). This observation supports Glu19-CO(2)H general acid catalysis of the formation of mutant.III. This is the commitment step in the Gln19Glu mutant catalysis of nitrile hydrolysis.  相似文献   

11.
A quantum molecular study by the SCFab initio method of the interaction of glyoxal with guanine provides for the formation of a stable covalent adduct in which the glyoxal fragment forms a complementary cyclic ring attached to the imino N1 and amino N2 atoms of guanine with the concomitant migration of the N-bonded H atoms to the oxygens of glyoxal. The reaction should proceed in two steps. The most plausible mechanism involves as the first step the interaction of a carbonyl group of glyoxal with the amino group of guanine followed by a similar interaction at the imino group of guanine, rather than the reverse order of interactions. The respective energy barriers are 49.7 and 63.9 kcal/mole. The intermediate product is also more stable when the adduct occurs first at N2:30.7 kcal/mole versus 17.9 kcal/mole for the adduct at N1.  相似文献   

12.
Several mechanisms have been considered as principal factors in enhancing the catalytic reaction velocity of enzymes: approximation, covalent catalysis, general acid-based catalysis, and strain. Among them, the strain on the substrate and/or the enzyme is often found to be brought about on association of the substrate and the enzyme. If this strain is released in the transition state, it contributes to enhancing the k(cat) value, although it does not change the k(cat)/K(m) value. In aspartate aminotransferase, however, we found by analysis of the Schiff base pK(a) values that the unliganded enzyme carries a strain in the protonated Schiff base formed between the coenzyme pyridoxal phosphate and a lysine residue. This bond is cleaved in most of the reaction intermediates, including the transition state. As a result, the activation energy between the free enzyme plus substrate and the transition state is decreased by 16 kJ/mol, equal to the value of the strain energy. The net effect of this strain is enhancement (10(3)-fold) of the catalytic efficiency in terms of k(cat)/K(m), the more important indicator of the catalytic efficiency at low concentration of the substrate.  相似文献   

13.
Ribonuclease H (RNase H) belongs to the nucleotidyl-transferase (NT) superfamily and hydrolyzes the phosphodiester linkages that form the backbone of the RNA strand in RNA x DNA hybrids. This enzyme is implicated in replication initiation and DNA topology restoration and represents a very promising target for anti-HIV drug design. Structural information has been provided by high-resolution crystal structures of the complex RNase H/RNA x DNA from Bacillus halodurans (Bh), which reveals that two metal ions are required for formation of a catalytic active complex. Here, we use classical force field-based and quantum mechanics/molecular mechanics calculations for modeling the nucleotidyl transfer reaction in RNase H, clarifying the role of the metal ions and the nature of the nucleophile (water versus hydroxide ion). During the catalysis, the two metal ions act cooperatively, facilitating nucleophile formation and stabilizing both transition state and leaving group. Importantly, the two Mg(2+) metals also support the formation of a meta-stable phosphorane intermediate along the reaction, which resembles the phosphorane intermediate structure obtained only in the debated beta-phosphoglucomutase crystal (Lahiri, S. D.; et al. Science 2003, 299 (5615), 2067-2071). The nucleophile formation (i.e., water deprotonation) can be achieved in situ, after migration of one proton from the water to the scissile phosphate in the transition state. This proton transfer is actually mediated by solvation water molecules. Due to the highly conserved nature of the enzymatic bimetal motif, these results might also be relevant for structurally similar enzymes belonging to the NT superfamily.  相似文献   

14.
The Pictet-Spengler reaction, which yields either a beta-carboline or a tetrahydroquinoline product from an aromatic amine and an aldehyde, is widely utilized in plant alkaloid biosynthesis. Here we deconvolute the role that the biosynthetic enzyme strictosidine synthase plays in catalyzing the stereoselective synthesis of a beta-carboline product. Notably, the rate-controlling step of the enzyme mechanism, as identified by the appearance of a primary kinetic isotope effect (KIE), is the rearomatization of a positively charged intermediate. The KIE of a nonenzymatic Pictet-Spengler reaction indicates that rearomatization is also rate-controlling in solution, suggesting that the enzyme does not significantly change the mechanism of the reaction. Additionally, the pH dependence of the solution and enzymatic reactions provides evidence for a sequence of acid-base catalysis steps that catalyze the Pictet-Spengler reaction. An additional acid-catalyzed step, most likely protonation of a carbinolamine intermediate, is also significantly rate controlling. We propose that this step is efficiently catalyzed by the enzyme. Structural analysis of a bisubstrate inhibitor bound to the enzyme suggests that the active site is exquisitely tuned to correctly orient the iminium intermediate for productive cyclization to form the diastereoselective product. Furthermore, ab initio calculations suggest the structures of possible productive transition states involved in the mechanism. Importantly, these calculations suggest that a spiroindolenine intermediate, often invoked in the Pictet-Spengler mechanism, does not occur. A detailed mechanism for enzymatic catalysis of the beta-carboline product is proposed from these data.  相似文献   

15.
It is proposed that the catalysis of GH1 enzymes follows a double‐displacement mechanism involving a glycosylation and a deglycosylation steps. In this article, the deglycosylation step was studied using quantum mechanical/molecular mechanical (QM/MM) approach. The calculation results reveal that the nucleophilic water (Wat1) attacks to the anomeric C1, and the deglycosylation step experiences a barrier of 21.4 kcal/mol from the glycosyl‐enzyme intermediate to the hydrolysis product, in which an oxocarbenium cation‐like transition state (TS) is formed. At the TS, the covalent glycosyl‐enzyme bond is almost broken (distance of 2.45 Å), and the new covalent bond between the attacking oxygen of the water molecule and C1 is basically established (length of 2.14 Å). In addition, a short hydrogen bridge is observed between the nucleophilic E386 and the C2? OH of sugar ring (distance of 1.94 Å) at the TS, which facilitates the ring changing from a chair form to half‐chair form, and stabilizes the oxocarbenium cation‐like TS. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
N‐Heterocyclic carbene catalyzed radical reactions are challenging and underdeveloped. In a recent study, Ohmiya, Nagao and co‐workers found that aldehyde carbonyl carbon centers can be coupled with alkyl radicals under NHC catalysis. An elegant aspect of this study is the use of a redox‐active carboxylic ester that behaves as an single‐electron oxidant to convert the Breslow intermediate into a radical adduct and concurrently release an alkyl radical intermediate as a reaction partner.  相似文献   

17.
Enzymes are biomacromolecules responsible for the abundant chemical biotransformations that sustain life. Recently, biochemists have discovered that multiple conformations and numerous parallel paths are involved during the processes catalyzed by enzymes. It is plausible that the entire macromolecular scaffold is involved in catalysis via cooperative motions that result in incredible catalytic efficiency. Moreover, some enzymes can very strongly bind the transition state with an association constant of up to 1024 M-1, suggesting that covalent bond formation is a possible process during the conversion of the transition state in enzyme catalysis, in addition to the concatenation of noncovalent interactions. Supramolecular chemistry provides fundamental knowledge about the relationships between the dynamic structures and functions of organized molecules. By tak-ing advantage of supramolecular concepts, numerous supramolecular enzyme mimics with complex and hierarchical structures have been designed and investigated. Through the study of supramolecular enzyme models, a great deal of information to aid our understanding of the mechanism of catalysis by natural enzymes has been acquired. With the development of supramolec-ular artificial enzymes, it is possible to replicate the features of natural enzymes with regards to their constitutional complexity and cooperative motions, and eventually decipher the conformation-based catalytic mystery of natural enzymes.  相似文献   

18.
Numerous studies, both in enzymatic and nonenzymatic catalysis, have been undertaken to understand the way by which metal ions, especially zinc ions, promote the hydrolysis of phosphate ester and amide bonds. Hydrolases containing one metal ion in the active site, termed mononuclear metallohydrolases, such as carboxypeptidase. A and thermolysin were among the first enzymes to have their structures unraveled by X-ray crystallography. In recent years an increasing number of metalloenzymes have been identified that use two or more adjacent metal ions in the catalysis of phosphoryl-transfer reactions (R-OPO3 + R′-OH → R′-OPO3 + R-OH; in the case of the phosphatase reaction R′-OH is a water molecule) and carbonyl-transfer reactions, for example, in peptidases or other amidases. These dinuclear metalloenzymes catalyze a great variety of these reactions, including hydrolytic cleavage of phosphomono-, -di- and -triester bonds, phosphoanhydride bonds as well as of peptide bonds or urea. In addition, the formation of the phosphodiester bond of RNA and DNA by polymerases is catalyzed by a two-metal ion mechanism. A remarkable diversity is also seen in the structures of the active sites of these di- and trinuclear metalloenzymes, even for enzymes that catalyze very similar reactions. The determination of the structure of a substrate, product, stable intermediate, or a reaction coordinate analogue compound bound to an active or inactivated enzyme is a powerful approach to investigate mechanistic details of enzyme action. Such studies have been applied to several of the metalloenzymes reviewed in this article; together with many other biochemical studies they provide a growing body of information on how the two (or more) metal ions cooperate to achieve efficient catalysis.  相似文献   

19.
N-alkylisonitrile, a precursor to isonitrile-containing lipopeptides, is biosynthesized by decarboxylation-assisted -N≡C group (isonitrile) formation by using N-alkylglycine as the substrate. This reaction is catalyzed by iron(II) and 2-oxoglutarate (Fe/2OG) dependent enzymes. Distinct from typical oxygenation or halogenation reactions catalyzed by this class of enzymes, installation of the isonitrile group represents a novel reaction type for Fe/2OG enzymes that involves a four-electron oxidative process. Reported here is a plausible mechanism of three Fe/2OG enzymes, Sav607, ScoE and SfaA, which catalyze isonitrile formation. The X-ray structures of iron-loaded ScoE in complex with its substrate and the intermediate, along with biochemical and biophysical data reveal that -N≡C bond formation involves two cycles of Fe/2OG enzyme catalysis. The reaction starts with an FeIV-oxo-catalyzed hydroxylation. It is likely followed by decarboxylation-assisted desaturation to complete isonitrile installation.  相似文献   

20.
The reduction of protochlorophyllide (Pchlide) to chlorophyllide, catalysed by the enzyme protochlorophyllide oxidoreductase (POR), is the penultimate step in the chlorophyll biosynthetic pathway and is a key light-driven reaction that triggers a profound transformation in plant development. As POR is light-activated it can provide new information on the way in which light energy can be harnessed to power enzyme reactions. Consequently, POR presents a unique opportunity to study catalysis at low temperatures and on ultrafast timescales, which are not usually accessible for the majority of enzymes. Recent advances in our understanding of the catalytic mechanism of POR illustrate why it is an important model for studying enzyme catalysis and reaction dynamics. The reaction involves the addition of one hydride and one proton, and catalysis is initiated by the absorption of light by the Pchlide substrate. As the reaction involves the Pchlide excited state, a variety of ultrafast spectroscopic measurements have shown that significant parts of the reaction occur on the picosecond timescale. A number of excited state Pchlide species, including an intramolecular charge transfer complex and a hydrogen bonded intermediate, are proposed to be required for the subsequent hydride and proton transfers, which occur on the microsecond timescale. Herein, we review spectroscopic investigations, with a particular focus on time-resolved transient absorption and fluorescence experiments that have been used to study the excited state dynamics and catalytic mechanism of POR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号