首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two hexacoordinated mononuclear Co(III) compounds of the type cis-[Co(L)(N3)2] X [1, X = ClO4; 2, X = PF6; L = N,N′-(bis(pyridine-2-yl)benzylidine)-1,4-butanediamine] have been synthesized and characterized by physicochemical and spectroscopic methods. The crystal structures of complexes 1 and 2 both have distorted octahedral geometry with two terminal azides in mutual cis orientations. In the crystalline state, two mononuclear units of 1 are associated by weak C–H…π interactions to produce a dimeric unit, which packs through C–H…O hydrogen bonds and π…π interactions leading to a 2-D continuum. The mononuclear units in 2 are engaged in weak cooperative intermolecular C–H…π interactions and multiple C–H…F hydrogen bonds giving rise to a 3-D network structure. These diamagnetic compounds are redox active and show luminescence in DMF solutions.  相似文献   

2.
One-pot reactions of cadmium(II) perchlorate/nitrate, Schiff bases (pbap/pfap) and pseudohalides (sodium azide/ammonium thiocyanate) in a 2:1:4 molar ratio in MeOH–MeCN solvent mixtures at room temperature result in a dinuclear compound [Cd2(pbap)(OH2)2(N3)4] (1) [pbap = N-(1-pyridin-2-ylbenzylidene)-N-[2-(4-{2-[(1-pyridin-2-ylbenzylidene)amino]ethyl}piperazin-1-yl)ethyl]amine] and a polymeric compound [Cd2(pfap)(μ1,3-NCS)(μ1,3-SCN)(NCS)2]n (2) [pfap = N-(1-pyridin-2-ylformylidene)-N-[2-(4-{2-[(1-pyridin-2ylformylidene)amino]ethyl}piperazin-1-yl)ethyl]-amine]. X-ray crystal structural analyses reveal a bis(tridentate) congregation behaviour of the hexadentate blocker (pbap/pfap) encapsulating two metal centers. Each cadmium(II) center in 1 and 2 is in a distorted octahedral geometry with CdN5O and CdN5S chromophores, respectively. In 1, the dinuclear units participate in intermolecular O–H?N hydrogen bonding between bound water O atoms and terminal azide N atoms, in combination with C–H?π interactions, resulting in a 3D supramolecular network with an intramolecular Cd?Cd distance of 6.473(2) Å. In the crystal lattice, the covalent 1D chain of 2 is further engaged in face-to-face π?π interactions from two terminal pyridine rings, which stabilizes the chain with an intradimer Cd?Cd separation of 6.640(5) Å. Both the complexes display intraligand 1(π–π) fluorescence and intraligand 3(π–π) phosphorescence in glassy solutions.  相似文献   

3.
Three unsymmetrical tetradentate Schiff base ligands, H2salipn, H2salipn-Br4 and H2salipn-Cl2, have been synthesized from the typical condensation reactions of treating 1,2-diaminopropane with salicylaldehyde, 3,5-dibromosalicylaldehyde and 5-chlorosalicylaldehyde, respectively. Treatment of [RuCl2(PPh3)3] with one equivalent of H2salipn or H2salipn-Br4 in the presence of triethylamine in tetrahydrofuran (THF) afforded the corresponding ruthenium(III) complexes [RuIIICl(PPh3)(salipn)] (1) and [RuIIICl(PPh3)(salipn-Br4)] (2). Interaction of [RuHCl(CO)(PPh3)3] with one equivalent of H2salipn-Cl2 or H2salipn-Br4 under the same conditions led to isolation of ruthenium(II) complexes [RuII(CO)(PPh3)(salalipn-Cl2)] (3) and [RuII(CO)(PPh3)(salalipn-Br4)] (4), respectively, in which one of the imine bonds was nucleophilically attacked by hydride to result in the formation of a mixed imine-amine ligand. The molecular structures of 1?1.5CH2Cl2, 2, 3?0.5CH2Cl2 and 4 have been determined by single-crystal X-ray crystallography. The electrochemical properties of 14 were also investigated. Their cyclic voltammograms displayed quasi-reversible Ru(IV)/Ru(III) and Ru(III)/Ru(II) couples with Eo ranging from 0.67 to 1.05 V and 0.74 to 0.80 V vs. Ag/AgCl (0.1 M), respectively.  相似文献   

4.
5.
Reaction of tridentate Schiff bases with nickel and cadmium salts in methanol afforded two new mononuclear complexes, [Ni(L1)2] (I) and [Cd(L2)2] (II), where L1 and L2 are the anions of 2-bromo-4-chloro-6-[(3-dimethylaminopropylimino)methyl]phenol (HL1) and 2-bromo-4-chloro-6-[(3-morpholin-4-ylpropylimino)methyl]phenol (HL2), respectively. The complexes were characterized by singlecrystal X-ray diffraction (CIF files CCDC nos. 1428653 (I) and 1428654 for (II)), FT-IR, and elemental analysis. Complex I crystallizes in the monoclinic space group P2 1/c, with a = 8.8216(8), b = 14.0424(8), c = 11.8687(12) Å, β = 111.238(2)°, V = 1370.4(2) Å3, Z = 2. Complex II crystallizes in the monoclinic space group P2 1/n, with a = 9.6774(4), b = 15.8970(6), c = 20.3144(7) Å, β = 90.408(2)°, V = 3125.1(2) Å3, Z = 4. The metal atoms in the complexes are coordinated by two tridentate Schiff base ligands, forming octahedral coordination. The free Schiff bases and the complexes were assayed for antibacterial activities. Both complexes are more active against the bacteria than the free Schiff bases. Complex II has the MIC value of 0.39 μg mL–1 against Bacillus subtilis.  相似文献   

6.
Two octahedral complexes [Ni(HL1)2](ClO4)2 (1) and [Ni(HL2)2](ClO4)2 (2) and a square planar complex [Ni(HL3)]ClO4 (3) have been prepared, where [HL1 = 3-(2-amino-ethylimino)-butan-2-one oxime, HL2 = 3-(2-amino-propylimino)butan-2-one oxime] and H2L3 = 3-[2-(3-hydroxy-1-methyl-but-2-enylideneamino)-1-methyl-ethylimino]-butan-2-one oxime. All the complexes have been characterized by elemental analyses, spectral studies and room temperature magnetic moment measurements. The molecular structures of all three compounds were elucidated on the basis of X-ray crystallography; complexes 1 and 2 are seen to be the mer isomers.  相似文献   

7.
Three new binuclear Ni(II) complexes [{Ni(L22py)Cl}2](ClO4)2 (1), [{Ni(L23py)Cl}2](ClO4)2 (2), and [{Ni(L33py)Cl}2](ClO4)2 (3), {L22py = N-(2-pyridylmethyl)-N-(2-aminoethyl)-1,2-diaminoethane, L23py = N-(2-pyridylmethyl)-N-(2-aminoethyl)-1,3-diaminopropane, L33py = N-(2-pyridylmethyl)-N-(3-aminopropyl)-1,3-diaminopropane} have been synthesized. Single crystal X-ray structure analysis showed that in each complex two distorted octahedral Ni(II) ions are bridged asymmetrically by a pair of chloride anions. Variable temperature magnetic susceptibility measurements of 1 and 3 revealed dominant ferromagnetic exchange interactions.  相似文献   

8.
Three new mononuclear Schiff-base complexes, namely [Mn(L)Cl] (1), [Ni(L)] (2), and [Cu(L)] (3), where L?=?anion of [N,N′-bis(2-hydroxybenzophenylidene)]propane-1,2-diamine, have been synthesized by reacting equimolar amounts of the respective metal chloride and the tetradentate Schiff base, H2L, in methanol. The complexes have been characterized by microanalytical, spectroscopic, single-crystal X-ray diffraction, and other physicochemical studies. Structural studies reveal that 1 adopts a distorted square-pyramidal geometry whereas 2 and 3 are isotypic with distorted square-planar geometries. The antibacterial activities of 13 along with their Schiff base have been tested against some Gram(+) and Gram(?) bacteria.  相似文献   

9.
Two new square-planar Ni(II) complexes, [NiL1(NCS)] (1) and [NiL2(N3)] (2) have been synthesized with the unsymmetrical tridentate Schiff base ligands [(CH3)2NCH2CH2N=C(CH3)CH=C(OH)(C6H5)], L 1 H, derived from benzoylacetone and 2-dimethylaminoethylamine and [(CH3CH2)2NCH2CH2N=C(CH3)CH=C(OH)(C6H5)], L 2 H, derived from benzoylacetone and 2-diethylaminoethylamine, respectively. The complexes have been characterized by elemental analysis, FT-IR, UV-Vis spectroscopy, electrochemical and thermal methods (where applicable). Structures have been established by the single-crystal X-ray diffraction technique which reveals the discrete nature of the complexes in which the metal centers adopt a distorted square planar geometry. Coordination environments of the metal ions in the complexes are satisfied with two different unsymmetrical Schiff base ligands having similar N2O donor sets and a terminal pseudohalide anion (thiocyanate for 1 and azide for 2).  相似文献   

10.
The crosslinked chloromethylated polystyrene (PSCH2–Cl) reacts with the Schiff base, derived from condensation of PSCH2–Cl with 3-formylsalicylic acid and salicylhydrazide to form a polystyrene-anchored Schiff base, PSCH2–LH3 (1). Compound 1 reacts with a number of metal ions to form polystyrene-anchored coordination compounds, PSCH2–LHM?·?DMF (where M?=?Cu, Zn, Cd, UO2, and MoO2), PSCH2–LHM′?·?3DMF (where M′?=?Mn, Co, and Ni), PSCH2–LHFeCl?·?2DMF, and PSCH2–LHZr(OH)2?·?2DMF. The polystyrene-anchored coordination compounds have been characterized by elemental analyses, spectra (infrared, reflectance, and electron spin resonance) and magnetic susceptibility measurements. The polystyrene-anchored compounds are magnetically dilute. Shifts in band positions of the groups involved in coordination have been utilized to find tridentate ONO donor behavior of 1. The polystyrene-anchored Zn(II), Cd(II), Zr(IV), MoO2(VI), and UO2(VI) compounds are diamagnetic, while Mn(II), Co(II), Ni(II), Cu(II), and Fe(III) compounds are paramagnetic. The polystyrene-anchored Cu(II) compound is square planar; Zn(II) and Cd(II) compounds are tetrahedral; Co(II), Ni(II), Mn(II), Fe(III), MoO2(VI), and UO2(VI) compounds are octahedral; and Zr(IV) compound is pentagonal bipyramidal.  相似文献   

11.
A new Co(II) complex of general formula [Co(L)2] has been synthesized from a NNO tridentate Schiff base ligand, 2-[(piperidin-2-ylmethylimino)-methyl]-phenol (L). The title complex is characterized by elemental, spectroscopic, antibacterial, and single crystal X-ray structural studies. X-Ray crystallography reveals that the complex shows a distorted octahedral geometry around the Co(II) ion. The complex was tested against several bacteria and shows good antibacterial activities against almost all of the bacteria. The interactions of the title complex with calf thymus deoxyribonucleic acid (CT-DNA) have been investigated by electronic absorption and fluorescence spectroscopy, showing that the complex interacts with CT-DNA via partial intercalation. Thermogravimetric analysis (TGA) of the complex has also been reported and the result shows that the complex is thermally stable up to 134 °C.  相似文献   

12.
Two mixed-ligand complexes, [Cu(L)(2imi)] (1) and [Ni(L)(2imi)]·MeOH (2) [L = 2-(((5-chloro-2-oxyphenyl)imino)methyl)phenolato) and 2imi = 2-methyl imidazole], have been prepared by the reaction of appropriate metal salts with H2L and 2-methyl imidazole. Their structures were characterized by microanalysis, FT-IR, UV–vis, molar conductivity, and 1H NMR for [Ni(L)(2imi)]·MeOH. The structures were determined using single crystal X-ray diffraction. Each four-coordinate metal center, Cu(II) in 1 and Ni(II) in 2, is surrounded by donors of Schiff base (L2?) and N of 2-methyl imidazole in square planar geometries. α-Amylase activities of these compounds have also been investigated. The experimental data showed that α-amylase was inhibited by Ni(II) complex while the Cu(II) complex causes a 1.3-fold decrease in Km value. Antimicrobial results show that these compounds, especially the Cu(II) complex, have potential for antibacterial activity against Gram negative and Gram positive bacteria and antifungal activity against Aspergillus fumigatus.  相似文献   

13.
Three cadmium(II) coordination polymers, [CdBr2(L1)] n (1), [CdI2(L2)] n (2), and Cd2Br4(L3)2 (3), where L1?=?1,3-bis(5,6-dimethylbenzimidazole)propane, L2?=?1,4-bis(5,6-dimethylbenzimidazole)butane, and L3?=?1,6-bis(5,6-dimethylbenzimidazole)hexane, have been synthesized by hydrothermal methods and characterized by elemental analyses, IR spectra, TGA, PXRD, and X-ray crystallographic diffraction. Complex 1 contains a 1-D helical chain in which CdBr2 units are linked by L1. For 2, each CdI2 is connected by two different conformations of L2 to form a 1-D zigzag chain. For 3, each CdBr2 is linked by L3 bridges to afford a binuclear structure. These results indicate that the spacer length of the ligands play important roles in assembly of Cd(II) coordination polymers. Thermogravimetric analyses and solid-state luminescent properties of the complexes have also been investigated.  相似文献   

14.
Two complexes, [Cd(ip–OH)(H2biim)(H2O)][Cd(ip–OH)(H2biim)(H2O)3]·8(H2O) (1) and [Cd(Himdc)(H2biim)] n (2) (H2ip–OH?=?5-hydroxylisophthalic acid, H2biim?=?2,2’-biimidazolate, H3imdc?=?4,5-imidazoledicarboxylic acid), have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. 1 is a 3-D supramolecular network constructed by 0-D and 1-D motifs through hydrogen bonds and π?π interactions. Complex 2 is a 1-D zigzag polymeric coordination chain and the chains are connected to form a 3-D supramolecular network by hydrogen bonds. The complexes were characterized by elemental and thermogravimetric analyses. Fluorescence was also investigated.  相似文献   

15.
Two new cadmium(II)–terephthalate complexes, 1{[Cd2(μ-terephthalate)2(L1)2]·9H2O} (1) and [{Cd(H2O)(L2)}2(μ-terephthalate)](terephthalate) · 10H2O (2), where L1 = (E)-N1,N1-diethyl-N2-(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine; L2 = N,N′-bis-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine; have been synthesized by a conventional solution method. Characterization by single crystal X-ray crystallography shows that compound 1 is composed of 1-D polymeric zig-zag chains with distorted pentagonal-bipyramidal cadmium centers. Compound 2 consists of centrosymmetric dinuclear complexes with a distorted pentagonal-bipyramidal cadmium center in which one terephthalate ligand bridges the metal centres and another terephthalate anion with water of crystallization forms a H-bonding network.  相似文献   

16.
Coordination polymers, {[Cd(2-mBIM)3](ClO4)2} n (1) and [Cd(BIM)2(NO3)2] n (2), have been prepared from the reaction of bis(2-methylimidazol-1-yl)methane(2-mBIM) with Cd(ClO4)2 and bis(imidazol-1-yl)methane (BIM) with Cd(NO3)2 in ethanol and water, respectively. Their structures were characterized by single crystal X-ray diffraction and IR spectroscopy. Compound 1 crystallizes in the rhombohedral space group R-3c with a = b = 12.3617(5) Å, c = 38.896(3) Å, γ = 120°, V = 5147.5(5) Å3, z = 6. The CdII occupies a crystallographic inversion center and is coordinated by six N atoms from six distinct 2-mBIM ligands to form a slightly distorted octahedral geometry. Each 2-mBIM is coordinated to two CdII cations, linking alternatively four CdII cations, resulting in a 32-membered M4L4 macrometallacycle. Compound 2 crystallizes in the monoclinic space group C2/m with a = 14.400(3) Å, b = 9.3894(18) Å, c = 8.6926(17) Å, β = 123.499(2)°, V = 980.1(3) Å3, z = 2. The Cd coordinates to four nitrogen atoms from four different BIM and two nitrates to form a slightly distorted octahedral geometry. The BIM ligands bridge to form a 1-D infinite double-bridged chain structure with 16-membered M2L2 macrometallacyclic structural units.  相似文献   

17.
18.
A series of mixed-ligand coordination complexes, namely [Zn(CA)(2)(BIE)] (1), [Zn(OX)(BIE)].H(2)O (2), [Zn(2)(m-BDC)(2)(BIE)(2)] (3), [Cd(m-BDC)(BIE)] (4), [Cd(5-OH-m-BDC)(BIE)] (5), [Zn(5-OH-m-BDC)(BIE)] (6), [Zn(2)(p-BDC)(2)(BIE)(2)].2.5H(2)O (7), [Cd(3)(p-BDC)(3)(BIE)] (8), [Cd(3)(BTC)(2)(BIE)(2)].0.5H(2)O (9) and [Zn(BTCA)(0.5)(BIE)] (10), where CA = cinnamate anion, OX = oxalate anion, m-BDC = 1,3-benzenedicarboxylate anion, 5-OH-m-BDC = 5-OH-1,3-benzenedicarboxylate anion, p-BDC = 1,4-benzenedicarboxylate anion, BTC = 1,3,5-benzenetricarboxylate anion, BTCA = 1,2,3,4-butanetetracarboxylate anion, and BIE = 2,2'-bis(1H-imidazolyl)ether, were synthesized under hydrothermal conditions. In 1, a pair of BIE ligands bridge adjacent Zn(II) atoms to give a centrosymmetric dimer. In 2 and 3, BIE ligands connect Zn(II)-carboxylate chains to form hexagonal honeycomb 6(3)-hcb and square 4(4)-sql layers, respectively. In 4 and 5, m-BDC and 5-OH-m-BDC bridge Cd(II) atoms to give dimeric units, respectively, which are further linked by BIE ligands to form sql nets. In 6, the BIE ligands extend the Zn(II)-carboxylate chains into 2D sinusoidal-like sql nets. The undulated sql nets polycatenate each other in the parallel manner with DOC (degree of catenation) = 2, yielding a rare 2D --> 3D parallel polycatenation net. In 7, the BIE and p-BDC ligands link the Zn(ii) atoms to give a rare 3-fold interpenetrated 3-connected 10(3)-ths net. 8 contains unusual edge-sharing polyhedral rods formed by [Cd(3)(CO(2))(6)] clusters. Each rod is connected by the benzene rings of p-BDC in four directions into a simple alpha-Po topology. In 9, two kinds of different 2D Cd-BTC layers are alternately linked to each other by sharing Cd(ii) centers to form a 3D framework, which is further linked by two kinds of BIE ligand to produce a complicated 3D polymeric structure. 10 possesses a unique (3,4)-connected 3D framework with (8(3))(2)(8(5).10) topology. The structural differences described indicate the importance of carboxylate ligands and metals in the framework formation of coordination complexes. The infrared spectra, thermogravimetric and luminescent properties were also investigated in detail for the compounds.  相似文献   

19.
Complexes of tetradentate macrocyclic Schiff base ligand, L, with MnII and PdII ions have been synthesized by the template condensation of 1,10-phenanthroline-2, 9-dicarboxaldehyde, 2,3-diamino-1,4-naphthoquinone and 1,2-dibromoethane in EtOH. The complexes were characterized by physicochemical and spectroscopic methods and an octahedral geometry is suggested for their structure. They have been screened for antibacterial activity against several bacteria, and the results are compared with the activity of penicillin.  相似文献   

20.
In this research, we prepared a new series of the Cu(II) (1) and Ni(II) (2) metal complexes of a tridentate Schiff base ligand, (E)-2-(5-bromo-2-hydroxybenzylideneamino) phenol (H2L). These complexes were characterized by elemental analysis, FT-IR, UV–Vis, and 1H-NMR spectroscopy. The crystal structures of (1) and (2) were determined by X-ray diffraction studies. The single crystal X-ray diffraction analyses revealed that copper(II) cation is five-coordinated and the coordination polyhedron is a slightly distorted square pyramid. Nickel(II), on the other hand, is four-coordinated, and has a regular, square planar geometry. Further discussed were the electrochemical reduction of these complexes. We also analyzed the nature of the metal–ligand bond in the complexes through NBO and EDA analysis. Besides, vibrational sample magnetometer (VSM) revealed complex (1) was ferromagnetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号