首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of Sr3B2SiO8 were obtained by solid-state reaction of stoichiometric mixture at 1200 °C. The crystal structure of the compound has been solved by direct methods and refined to R1=0.064 (wR=0.133). It is orthorhombic, Pnma, a=12.361(4), b=3.927(1), c=5.419(1) Å, V=263.05(11) Å3. The structure contains zigzag pseudo-chains running along the b axis and built up from corner sharing (Si,B)−O polyhedra. Boron and silicon are statistically distributed over one site with their coordination strongly disordered. Sr atoms are located between the chains providing three-dimensional linkage of the structure.The formation of Sr3B2SiO8 has been studied using annealing series in air at 900-1200 °C. According powder XRD, the probe contains pure Sr3B2SiO8 over 1100 °C. The compound is not stable below 900 °C. In the pseudobinary Sr2B2O5-Sr3B2SiO8 system a new series of solid solutions Sr3−xB2Si1−xO8−3x (x=0-0.9) have been crystallized from melt. The thermal behavior of Sr3B2SiO8 was investigated using powder high-temperature X-ray diffraction (HTXRD) in the temperature range 20-900 °C. The anisotropic character of thermal expansion has been observed: αa= −1.3, αb=23.5, αc=13.9, and αV=36.1×10−6 °C−1 (25 °C); αa= −1.3, αb=23.2, αc=5.2, and αV=27.1×10−6 °C−1 (650 °C). Maximal thermal expansion of the structure along of the chain direction [0 1 0] is caused by the partial straightening of chain zigzag. Hinge mechanism of thermal expansion is discussed.  相似文献   

2.
The microstructure and phase stability of nanocrystalline mixed oxide LuxCe1−xO2−y (x=0-1) are described. Nano-sized (3-4 nm) oxide particles were prepared by the reverse microemulsion method. Morphological and structural changes upon heat treatment in an oxidizing atmosphere were studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman and Yb3+ emission spectroscopy, the latter ion being present as an impurity in the Lu2O3 starting material. Up to 950 °C, the samples were single phase, with structure changing smoothly with Lu content from fluorite type (F) to bixbyite type (C). For the samples heated at 1100 °C phase separation into coexisting F- and C-type structures was observed for 0.35<x<0.7. It was also found that addition of Lu strongly hinders the crystallite growth of ceria during heat treatment at 800 and 950 °C.  相似文献   

3.
Single crystals of a new compound, BaBi2B4O10 were grown by cooling a melt with the stoichiometric composition. The crystal structure of the compound has been solved by direct methods and refined to R1=0.049 (wR=0.113) on the basis of 1813 unique observed reflections (|Fo|>4σ|Fo|). It is monoclinic, space group P21/c, a=10.150(2), b=6. 362(1), c=12.485(2) Å, β=102.87(1)o, V=786.0(2) Å3, Z=4. The structure is based upon anionic thick layers that are parallel to (001). The layers can be described as built from alternating novel borate [B4O10]8− chains and bismuthate [Bi2O5]4− chains extended along b-axis. The borate chains are composed of [B3O8]7− triborate groups of three tetrahedra and single triangles with a [BO2] radical. The borate chains are interleaved along the c-axis with rows of the Ba2+ cations so that the Ba atoms are located within the layers. The layers are connected by two nonequivalent Ba-O bonds as well as by two equivalent Bi-O bonds with bond valences in the range of 0.2-0.3 v.u.Thermal expansion of BaBi2B4O10 studied by high-temperature X-ray powder diffraction in the temperature range of 20-700 °C (temperature step 30-35 °C) is highly anisotropic. While the b and c unit-cell parameters increase almost linearly on heating, temperature dependencies of a parameter and β monoclinic angle show nonlinear behavior. As a result, on heating orientation of thermal expansion tensor changes, and bulk thermal expansion increases from 20×10−6 °C−1 at the first heating stage up to 57×10−6 °C−1 at 700 °C that can be attributed to the increase of thermal mobility of heavy Bi3+ and Ba2+ cations.  相似文献   

4.
Thermal behaviour of the glass series (100-x)[50ZnO-10B2O3-40P2O5xSb2O3 (x=0-42 mol%) and (100-y)[60ZnO-10B2O3-30P2O5ySb2O3 (y=0-28 mol%) was investigated by DSC and TMA. The addition of Sb2O3 results in a decrease of the glass transition temperature and crystallization temperature in both compositional series. All glasses crystallize on heating in the temperature range of 522–632°C. Thermal expansion coefficient of the glasses monotonously increases with increasing Sb2O3 content in both series and varies within the range of 6.6–11.7 ppm °C−1. From changes of thermal capacity within the glass transition region it was concluded that with increasing Sb2O3 content the ‘fragility’ of the studied glasses increases.  相似文献   

5.
Crystal structure of LiB3O5 (a framework of [B3O5] rings and Li atoms located in interspaces) was refined at high temperatures using single-crystal X-ray diffraction, MoKα-radiation, anharmonic approximation, orthorhombic; Pna21; Z=4; 20 °C (a=8.444, b=7.378, c=5.146 Å, 1411 F(hkl), R=0.022); 227 °C (a=8.616, b=7.433, c=5.063 Å, 1336 F(hkl), R=0.026), 377 °C (a=8.746, b=7.480, c=5.013 Å, 1193 F(hkl), R=0.035). A high mobility of Li atoms and their highly asymmetric vibrations are revealed. Ellipsoid of Li thermal vibrations is oviform. Li is shifted on heating to 0.26 Å mainly along a-axis causing high thermal expansion in this direction; Li temperature factors are multiplied by 4 on heating. Rigid boron-oxygen groups in LiB3O5 remain practically stable on heating similar to α-Na2B8O13 and α-CsB5O8. At the same time these groups rotate relative to each other like hinges leading to extremely anisotropic thermal expansion (αa=101, αb=31, αc=−71, αv=60×10−6 °C−1, 20-530 °C, HTXRPD data).  相似文献   

6.
We investigated the influence of B substitution for Al2W3O12 on thermal changes of UV–Vis and Raman spectra, and colors. First, B-substituted Al2W3O12 powder was synthesized by a solid-state reaction method. Single-phase Al2?xBxW3O12 powders with x = 0, 0.10 and 0.20 were successively prepared. B substitution promoted thermal changes of the UV–Vis spectra, resulting in a more pronounced color change of Al2W3O12 in the range of 30–150 °C. Raman spectra of the Al2?xBxW3O12 powders with x = 0 and 0.20 indicated that the lattice vibrations of Al2?xBxW3O12 with x = 0.20 were larger than those of Al2W3O12. The thermal change of the color phase (ΔE) in the range 30–150 °C of Al2W3O12 was increased by B substitution. The color of the B-substituted Al2W3O12 powders changed reversibly from pale white at 30 °C to light yellowish green at 150 °C.  相似文献   

7.
High energy ball-milling methods were employed in the synthesis of anatase-doped hematite xTiO2(a) · (1−x)α-Fe2O3 (x = 0.1, 0.5, and 0.9) ceramic system. The thermal behavior of as obtained ceramic system was characterized by simultaneous DSC–TG. The pure anatase phase was found to be stable below 800 °C, but there is a 10.36% mass loss due to the water content. Two exothermic peaks on DSC curves of pure anatase indicate the different crystallization rates. The pure hematite partially decomposed upon heating under argon atmosphere. Ball-milling has a strong effect on the thermal behaviors of both anatase and hematite phases. For x = 0.1 and 0.5, there is gradual Ti substitution of Fe in hematite lattice, and the decomposition of hematite is enhanced due to the smaller particle size after ball-milling. The crystallization of hematite was suppressed as the enthalpy values decreased due to the anatase-hematite solid–solid interaction. For x = 0.9, most of the anatase phase converted to rutile phase after long milling time. The thermal behavior of xTiO2(a) · (1−x)α-Fe2O3 showed smaller enthalpy value of the hematite transformation to magnetite and anatase crystallization due to the small fraction of hematite phase in the system and hematite–anatase interaction, while the mass loss upon heating increased as a function of milling time due to more water content absorbed by the smaller particle size.  相似文献   

8.
Summary The reaction of a hydrated nitrate salt of lanthanide (Ln=Pr, Nd, Gd, Dy, Er) with the polyfunctional ligand salicylhydroxamic acid (H3sha), in the presence of base, afforded solid compounds, insoluble in common organic solvents and in water. The new complexes characterized by means of elemental analyses (C, H, N, Ln), magnetic moment determinations and spectroscopic data (IR, MS). It is proposed that they are neutral, with a possible polymeric structure of the general type: [Ln2(Hsha)2(H2sha)(DMF)x(CH3O)(H2O)]n×2H2O Their thermal decomposition was studied in nitrogen and/or oxygen atmosphere, between 25-1000°C by using simultaneous TG/DTG-DTA technique. The IR spectroscopy used to determine the intermediates and the final products. The intermediates at 180°C suggest the formation of N-hydroxylactam complex, which upon further heating gives a carbonaceous residue of Ln2O3 at 1000°C in nitrogen, while in oxygen the stable oxides are formed at 600°C.  相似文献   

9.
In this study, with the aim to enhance the ionic conduction of known structures by defect chemistry, the La2O3-Ta2O5 system was considered with a focus on the La3TaO7 phase whose structure is of Weberite type. In order to predict possible preferential substitution sites and substitution elements, atomistic simulation was used as a first approach. A solid solution La3−xSrxTaO7−x/2 was confirmed by X-ray diffraction and Raman spectroscopy; it extends for a substitution ratio up to x = 0.15. Whereas La3TaO7 is a poor oxide ion conductor (σ700 °C = 2 × 10−5S.cm−1), at 700 °C, its ionic conductivity is increased by more than one order of magnitude when 3.3% molar strontium is introduced in the structure (σ700 °C = 2 × 10−4S.cm−1).  相似文献   

10.
The presence of SmCrO4 is experimentally established. In Mg2+-substituted SmCrO3, single-phase perovskite Sm(Cr1−xMgx)O3, where x=0-0.23, are formed at ∼830°C by decomposition of Sm(Cr1−xMgx)O4 which crystallizes at 530-570°C from amorphous materials prepared by the hydrazine method. Sm(Cr1−xMgx)O3 solid solution powders consisting of submicrometer-size particles are sinterable; dense materials can be fabricated by sintering for 2 h at 1700°C in air. The relative densities, grain sizes, and electrical conductivities increase with increased Mg2+ content. Sm(Cr0.77Mg0.23)O3 materials exhibit an excellent direct current electrical conductivity of 2.2×103 S m−1 at 1000°C.  相似文献   

11.
A series of Al-substituted YBa(Co1−xAlx)4O7+δ samples was synthesized and characterized with respect to the capability to store large amounts of oxygen at low temperatures (at 200-400 °C) and the phase decomposition upon heating under oxidizing conditions at higher temperatures (above 550 °C). It was revealed that increasing the Al-substitution level up to x≈0.10 boosts up the phase-decomposition temperature from ∼550 to ∼700 °C, while the unique oxygen absorption/desorption characteristics remain nearly the same as those of the pristine YBaCo4O7+δ phase. The maximum amount of excess oxygen absorbed by the Al-substituted YBa(Co1−xAlx)4O7+δ samples was determined to be as large as δ≈1.45 for x=0.10 (in 100 atm O2 at 320 °C). Isothermal annealing experiments carried out for the same x=0.10 phase at 300 °C revealed that it could be reversibly charged and discharged with 1.2 oxygen atoms per formula unit by switching the gas flow from N2 to O2 and vice versa.  相似文献   

12.
Composites in the TiB2-Na2O·B2O3·Al2O3 systems, TiB2-MBA (MB stands for sodium metaborate and A is Al2O3), were prepared by self-propagating high-temperature synthesis (SHS), in simultaneous mode. Selection of these compositions was ruled by the interesting properties of both TiB2 and double borates of alkali metal and aluminum. The structure of the obtained materials was evaluated by micro-Raman spectroscopy, from room temperature up to 600 °C, and X-ray photoelectron spectroscopy (XPS). Formation of the TiB2 and TiO2−xBx phases along with TiO2 as rutile were identified as titanium speciation in the grain phase embedded in a sodium aluminum borate matrix. Integration of the Raman spectra of the grain phases revealed a TiB2 content of 16.99% and 23.32% for the two composite investigated 2TiB2·2MBA and 3TiB2·5MBA. A constrained-width model for the spectral deconvolution of the high-frequency Raman band was forwarded to calculate the proportion of tetrahedral boron atoms (7.424%) in the blank borate matrix Na2B2O4·Al2O3 in solid phase.  相似文献   

13.
Composite solid electrolytes in the system (1 − x)LiNO3-xAl2O3, with x = 0.0-0.5 were synthesized by sol-gel method. The synthesis carried out at low temperature resulted in voluminous and fluffy products. The obtained materials were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy/energy dispersive X-ray, Fourier transform infrared spectroscopy and AC impedance spectroscopy. Structural analysis of the samples showed base centred cell type of point lattice of LiNO3 for the composite samples with x = 0.1-0.2 and body centred cell for the sample with x = 0.3. A trace amount of α-LiAlO2 crystal phase was also present in these composite samples. The thermal analysis showed that the samples were in a stable phase between 48 °C and 230-260 °C. Morphological analysis indicated the presence of amorphous phase and particles with sizes ranging from micro to nanometre scale for the composite sample with x = 0.1. The conductivities of the composites were in the order of 10−3 and 10−2 S cm−1 at room temperature and 150 °C, respectively.  相似文献   

14.
The glass transition temperature (Tg), density, refractive index, Raman scattering spectra, and X-ray photoelectron spectra (XPS) for xZnO-yBi2O3-zB2O3 glasses (x=10-65, y=10-50, z=25-60 mol%) are measured to clarify the bonding and structure features of the glasses with large amounts of ZnO. The average electronic polarizability of oxide ions (αO2−) and optical basicity (Λ) of the glasses estimated using Lorentz-Lorenz equation increase with increasing ZnO or Bi2O3 content, giving the values of αO2−=1.963 Å3 and Λ=0.819 for 60ZnO-10Bi2O3-30B2O3 glass. The formation of BOBi and BOZn bridging bonds in the glass structure is suggested from Raman and XPS spectra. The average single bond strength (BMO) proposed by Dimitrov and Komatsu is applied to the glasses and is calculated using single bond strengths of 150.6 kJ/mol for ZnO bonds in ZnO4 groups, 102.5 kJ/mol for BiO bonds in BiO6 groups, 498 kJ/mol for BO bonds in BO3 groups, and 373 kJ/mol for BO bonds in BO4 groups. Good correlations are observed between Tg and BMO, Λ and BMO, and Tg and Λ, proposing that the average single bond strength is a good parameter for understanding thermal and optical properties of ZnOBi2O3B2O3 glasses.  相似文献   

15.
The structure of bis(1,1,3,3-tetramethylguanidinium) dichromate was determined from powder X-ray diffraction data. The compound crystallizes in the monoclinic system (space group P21/n) with a = 10.79714 (15) Å, b = 11.75844 (16) Å, c = 8.15097 (11) Å, β = 109.5248 (6)°. The structure consists of dichromate anions (Cr2O72−) stabilized by tetramethylguanidinium cations ([H2NC(N(CH3)2)2]+ or [TMGH]+). Phase transitions of [TMGH]2Cr2O7 were determined by differential scanning calorimetry, thermal gravimetric analysis and in situ Raman spectroscopy, where the decomposition of the matrix into CrOx was found at 171-172 °C. Further heat treatment to above 400 °C resulted in formation of the thermodynamically stable Cr2O3, most likely with the [TMGH]+ cation as reductant. The catalytic activity of [TMGH]2Cr2O7 supported on TiO2 anatase in the selective catalytic reduction (SCR) of nitrogen oxide was also investigated, however only moderate activity was observed in the temperature range 100-400 °C compared to the activity of e.g., vanadia supported on titania.  相似文献   

16.
BaCo0.7Fe0.3−xNbxO3−δ (BCFN, x = 0–0.2) were prepared by the conventional solid state reaction process. The crystal structure, electrical conductivity and oxygen desorption property were studied by X-ray diffraction (XRD), different thermal analysis (DTA), four-terminal direct current conductivity and oxygen temperature programmed desorption (O2-TPD), respectively. At x = 0.08–0.20, BCFN have a cubic perovskite structure, while it exhibits the hexagonal structure for x = 0.00 and the mixed phases of cubic perovskite with trace amount of hexagonal for x = 0.05. BCFN shows good structure stability in 5%H2 + Ar reducing atmosphere, and it is enhanced with the increased Nb-doping content. The electrical conductivity of BCFN increases with increasing temperature and decreases with the Nb substitution content for iron. BCFN exhibits a p-type semiconductor and obeys the thermally activated small polarons hopping mechanism. The oxygen fluxes increase with the working temperature and the COG flow rate, but decrease with increasing Nb content. The flux of BCFN (x = 0.08) with 1.0 mm thickness membrane reaches 25.77 ml min−1 cm−2 at 875 °C, higher than most of the reported materials.  相似文献   

17.
The spinel LiMn2O4 and layered oxides LiNi x Co1 – x O2 (x = 1; 0.75; 0) have been prepared by Complex Sol-gel Process (CSGP). The appropriate sol compositions were obtained from acetate aqueous solution of metals containing ascorbic acid by alkalizing it with aqueous ammonia. Gels were produced from the systems by evaporation of water and other volatilies at elevated temperatures. A very intense foaming was observed during the heating at the temperatures higher than 140°C. To avoid foaming in the course of the final thermal treatment, a very long (lasting several days) soaking step was found necessary. However pretreated materials exhibit self-ignition at temperature range 320–500°C dependent on socking conditions. The dependence of self-ignition temperature on carbon content in bed as well as on specific surface has not been proved. Final thermal transformation of gel to solid was studied by TG, DTA, XRD, and IR methods. It was observed that final compounds are formed faster from precursors which did not contain Ni (e.g. LiMn2O4 and LiCoO2), while Li carbonate is not formed in these systems. In contrast, in Li-Ni(Co)-O the formation of Li(or Ni)CO3 was always proved. In addition, during the thermal treatment Ni species are partially reduced even to metallic phase. This effect evidently restrains the formation of pure layered oxides phase. Electrochemical properties of carbonate free compounds are definitely better than of those containing CO3.  相似文献   

18.
The aim of this work was to determine structural parameters of the Y10−xLaxW2O21 (x=0-10) solid solution series and investigate their electric properties. Crystallographic data shows a gradual increase in symmetry with increasing La content, as the structure evolves from orthorhombic, Y10W2O21, towards the pseudo-cubic structure of Y5La5W2O21. The solubility limit of La2O3 was found to be 50% (x=5). Above this level two phases were observed, La6W2O15 and (La,Y)10+xW2−xO21−δ. The conductivity of Y rich samples was very low, with σ of the order 2×10−5-5×10−5 S cm−1 at 1000 °C, whilst ionic conductivity was observed for most La rich doped samples. The highest conductivity was observed for La10W2O21 and its doped analogues, at 1×10−3-5×10−3 S cm−1 at 1000 °C. Unit cell parameters were determined as a function of temperature from 0 to 1000°C, and thermal expansion of these materials was determined from temperature studies carried out at the Australian Synchrotron facility in Melbourne, Victoria, Australia.  相似文献   

19.
Single crystals of α- and β-polymorphs of Bi2B8O15 were grown by Czochralski method from a charge of the stoichiometric composition. The crystal structure of β-Bi2B8O15 was solved by direct methods from a twinned crystal and refined to R1=0.081 (wR=0.198) on the basis of 1584 unique observed reflections (I>2σ(I)). The compound is triclinic, space group , a=4.3159(8), b=6. 4604(12), c=22.485(4) Å, α=87.094(15)°, β=86.538(15)°, γ=74.420(14)°, V=602.40(19) Å3, Z=2. The B-O layered anion of β-Bi2B8O15 is topologically identical to the anion of α-Bi2B8O15 but the orientation of neighboring layers is different. Thermal expansion of α-Bi2B8O15 has been investigated by X-ray powder diffraction in air in temperature range from 20 to 700 °C. It is strongly anisotropic, which can be explained by the hinge mechanism applied to chains of Bi-O polyhedra. While the anisotropy of thermal expansion is rather high, the volume thermal expansion coefficient αV=40×106 °C−1 for α-Bi2B8O15 is close to those of other bismuth borates.  相似文献   

20.
The crystal structures of NaK2B9O15 (, , , β=94.080(1)°, Rp=0.047, Rwp=0.059, RB=0.026), Na(Na.17K.83)2B9O15 (, , , β=94.228(2)°, Rp=0.053, Rwp=0.068, RB=0.026), and (Na.80K.20)K2B9O15 (, , , β=94.071(1)°, Z=4, Rp=0.041, Rwp=0.052, RB=0.023) were refined in the monoclinic space groups P21/c(Z=4) using X-ray powder diffraction data and the Rietveld method. These nonaborates are isostructural to K3B9O15. Their crystal structure consists of a three-dimensional open framework built up from three crystallographically independent triborate groups. The alkali metal cations are located on three different sites in the voids of the framework. High-temperature X-ray diffraction studies show that NaK2B9O15 decomposes at about 700 °C in accordance with the peritectic reaction NaK2B9O15↔K5B19O31+liquid. The thermal expansion of NaK2B9O15 and Na(Na.17K.83)2B9O15 is highly anisotropic. A similarity of the thermal and compositional (Na-K substitution) deformations of NaK2B9O15 is revealed: heating of NaK2B9O15 by 1 °C leads to the same deformations of the crystal structure as increasing the amount of K atoms in (Na1−xKx)3B9O15 by 0.04 at% K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号