首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Both [Rh4(CO)12] and [Rh6(CO)16] disproportionate in pyridine to cis-[Rh(CO)2(py)2]+ and [Rh5(CO)13(py)2]. In the same solvent, cis-[Rh(CO)2(py)2]+ is reduced by CO/H2O to [(py)2H][Rh5(CO)13-(py)2], which has been structurally characterized.  相似文献   

2.
Reaction of cis-[Ptph2(SMe2)2] with Me2PCH2PMe2 (dmpm) gave cis-[PtPh2(dmpm-P)2] (1) or cis,cis-[Pt2Ph4(μ-dmpm)2] (2) and reaction of 1 with [Pt2Me4(μ-SMe2)2] gave cis,cis-[Ph2Pt(μ-dmpm)2PtMe2] (3). Reaction of 1 with trans-[PtClR(SMe2)2] gave cis,trans-[Ph2Pt(μ-dmpm)2PtClR], R = Me (5) or Ph (6), and in polar solvents, these isomerized to give [Ph2Pt(μ-dmpm)2PtR]+Cl. When R = Me, further isomerization via the phenyl group transfer gave [PhMePt(μ-dmpm)2PtPh]+Cl. Oxidative addition of methyl iodide occurred reversibly at the cis-[PtMe2P2 unit of 3 to give cis,fac-[Ph2Pt(μ-dmpm)2PtIMe3] but complex 2 failed to react with MeI. A comparison with similar known complexes of Ph2PCH2PPh2 (dppm) is made and differences are attributed primarily to the lower steric hindrance of dmpm.  相似文献   

3.
Complexes of the types (a) trans- and cis-[Pd(C6X5)2 (CNR)2], (b) trans- [Pd(C6X5)Cl(CNR)2] and (c) [Pd(C6X5)(CNR)3]ClO4 (X = F or Cl;R = But cyclohexyl or p-tolyl) have been made by replacement of the tetrahydrothiophen or Cl groups of appropriate precursors by isonitrile. Their structures have been assigned on the basis of their IR and 1H NMR spectra.  相似文献   

4.
The reaction of trans-X(CO)4WCNR2 (X = Br, R = c hex (cyclohexyl); X = Cl, R = c hex, ipr (isopropyl) with M+X (M+ = NEt4+, X = Br; M+ = PPN+, X = Cl) leads under substitution of one CO ligand to new anionic dihalo(tricarbonyl)carbyne-tungsten complexes of the type M+ mer-[(X)2(CO)3WCNR2] (M+ = NEt4+, X = Br, R = c hex; M+ = PPN+, X = Cl, R = c hex, i pr), whose composition and structure were determined by elemental analysis as well as by IR, 1H and 13C NMR spectroscopy. In the anionic carbyne complexes the entered halogen ligand, coordinated in a cis position relative to the carbyne ligand on the metal, can be easily substituted by neutral nucleophiles, as the reaction of PPN+ mer-[(Cl)2(CO)3WCNchex2] with PPh3 demonstrates yielding the neutral carbyne complex mer-[Cl(CO)3(PPh3)WCNchex2].  相似文献   

5.
Treatment of [Ru2(CO)4(MeCN)6][BF4]2 or [Ru2(CO)4(μ-O2CMe)2(MeCN)2] with uni-negative 1,1-dithiolate anions via potassium dimethyldithiocarbamate, sodium diethyldithiocarbamate, potassium tert-butylthioxanthate, and ammonium O,O′-diethylthiophosphate gives both monomeric and dimeric products of cis-[Ru(CO)22-(SS))2] ((SS)=Me2NCS2 (1), Et2NCS2 (2), tBuSCS2 (3), (EtO)2PS2 (4)) and [Ru(CO)(η2-(Me2NCS2))(μ,η2-Me2NCS2)]2 (5). The lightly stabilized MeCN ligands of [Ru2(CO)4(MeCN)6][BF4]2 are replaced more readily than the bound acetate ligands of [Ru2(CO)4(μ-O2CMe)2(MeCN)2] by thiolates to produce cis-[Ru(CO)22-(SS))2] with less selectivity. Structures 1 and 5 were determined by X-ray crystallography. Although the two chelating dithiolates are cis to each other in 1, the dithiolates are trans to each other in each of the {Ru(CO)(η2-Me2NCS2)2} fragment of 5. The dimeric product 5 can be prepared alternatively from the decarbonylation reaction of 1 with a suitable amount of Me3NO in MeCN. However, the dimer [Ru(CO)(η2-Et2NCS2)(μ,η2-Et2NCS2)]2 (6), prepared from the reaction of 2 with Me3NO, has a structure different from 5. The spectral data of 6 probably indicate that the two chelating dithiolates are cis to each other in one {Ru(CO)(η2-Et2NCS2)2}fragment but trans in the other. Both 5 and 6 react readily at ambient temperature with benzyl isocyanide to yield cis-[Ru(CO)(CNCH2Ph)(η2-(SS))2] ((SS)=Me2NCS2 (7) and Et2NCS2 (8)). A dimerization pathway for cis-[Ru(CO)22-(SS))2] via decabonylation and isomerization is proposed.  相似文献   

6.
Treatment of [Pd{CH2C(CH3)CH2}(Ph2PPy)Cl] (Ph2PPy = 2-(diphenylphosphino)pyridine) with cis-[Pd(tBuNC)2Cl2] in dichloromethane affords the mixed isocyanide-tertiary phosphine complex cis-[Pd(tBuNC)Ph2PPy)Cl2], in which the Ph2PPy is a monodentate P-donor, and [{Pd[CH2C(CH3)CH2]Cl}2]. The steric effects of the Ph2PPy bridging ligand in determining the reaction course is discussed. The complex cis-[Pd(tBuNC)(Ph2PPy)Cl2] was crystallographically characterized: P21/n, a = 15.143(2), b = 9.527(1), c = 17.517(4) Å, β = 113.96(1)°, V= 2309.4(7) Å3, Z = 4. The final R value was 0.044, Rw= 0.046 for the 3078 reflections with I > 3σ(I).  相似文献   

7.
The chemistry of the di-μ-methylene-bis(pentamethylcyclopentadienyl-rhodium) complexes is reviewed. The complex [{(η5-C5Me5)RhCl2}2] (1a) reacted with MeLi to give, after oxidative work-up, blood-red cis-[{(η5-C5Me5)Rh(μ-CH2)}2(Me)2], 2. This has the two rhodiums in the +4 oxidation state (d5), and linked by a metal-metal bond (2.620 Å). Trans-2 was formed on isomerisation of cis-2 in the presence of Lewis acids, or by direct reaction of 1a with Al2Me6, followed by dehydrogenation with acetone. The Rh-methyls in [{(η5-C5Me5)Rh(μ-CH2)}2(Me)2] were readily replaced under acidic conditions (HX) to give [{(η5-C5Me5)Rh(μ-CH2)}2(X)2] (X = Cl, Br or I); these latter complexes reacted with a variety of RMgX to give [{(η5-C5Me5)Rh(μ-CH2)}2(R)2] (R = alkyl, Ph, vinyl, etc.). Trans-2 also reacted with HBF4 in the presence of L to give first [{(η5-C5Me5)Rh(μ-CH2)}2(Me)(L)]+ and then [{(η5-C5Me5)Rh(μ-CH2)}2(L)2]2+ (L = MeCN, CO, etc.). The {(η5-C5Me5)Rh(μ-CH2)}2 core is rather kinetically inert and also forms a variety of complexes with oxy-ligands, both cis-, e.g. [{(η5-C5Me5)Rh(μ-CH2)}2(μ-OAc)]+ and trans-, such as [(η5-C5Me5)Rh(μ-CH2)}2(H2O)2]2+. The complexes [{(η5-C5Me5)Rh(μ-CH2)}2(R)L]+ (R = Me or aryl) in the presence of CO, or [{(η5-C4Me5)Rh(μ-CH2)}2(R)2] (R = Me, Ph or CO2Me) in the presence of mild oxidants, readily yield the C---C---C coupled products RCH=CH2. The mechanisms of these couplings have been elucidated by detailed labelling studies: they are more complex than expected, but allow direct analogies to be drawn to C---C couplints that occur during Fischer-Tropsch reactions on rhodium surfaces.  相似文献   

8.
A new optically active ONNO-type tetradentate ligand, ethylenediamine-N,N′- di-S-isobutylacetate (SS-eniba), has been synthesized. During the preparation of diaqua cobalt(III) complexes of SS-eniba, [Co(SS-eniba)(H2O)2]+, the title ligand has coordinated stereospecifically to the cobalt(III) ion to give three isomers, Δ-s-cis, Δ-uns-cis and Λ-uns-cis, which have been isolated and characterized via electronic absorption, circular dichroism (CD), and 1H NMR spectroscopy, along with elemental analysis data. The preparation of Δ-s-cis-[Co(SS-eniba)Cl2]+ and Δ-s-cis-[Co(SS-eniba)CO3]+ are also reported.  相似文献   

9.
Miho Fujita  R. D. Gillard 《Polyhedron》1988,7(24):2731-2742
Stable aqueous solutions of the green ion [Co(sa1)3]3− (sa1 = dianion, C6H4( )(CO ), of salicylic acid, 2-hydroxybenzoic acid) are obtained from [Co(NH3)5 C1]C12 and an excess of salicylic acid. Several salts, [C][Co(sa1)3] have been characterized, where C = [Co(NH3)6]3+ and [M(en)3]3+ (M = Co or Rh, EN = 1,2-diamino-ethane). By using (+)-[Rh(en)3]3+, optical resolution via less soluble diastereoisomeric salts has been achieved, and isomerization and racemization have been studied. Resolved tris-malonatocobaltate(III) has been used as a model. A novel thermochromism (77-293 K) in solid Δ(+)-[Rhen3]Λ[Co(sa1)3 is described.  相似文献   

10.
The use of classical Werner-type cis-[Co(Cl)2(tetraamine)]+ (tetraamine = cyclen or tren) complexes for their complexation study of biologically relevant ligands has been pursued. These chlorocomplexes are found to be in the chloroaqua/chlorohydroxo forms under the physiological conditions used, their chloride substitution reactivity being dominated by conjugate base pathways, specially when tetraamine = cyclen. Further studies with nucleotides indicate that the substitution processes on cis-[Co(H2O)2(tetraamine)]3+, up to neutral pH, correspond to a simple reaction producing final stable phosphato bound mononucleotide complexes. These complexes are found to be an equilibrium mixture between monodentate O-phosphato and chelate O-phosphato-N-nucleotide forms. No evidence has been found for hydrolytic cleavage of the phosphato-nucleoside bond, as found in other systems with activated phosphates or higher pH values. A full kinetic profile of the process is proposed for the systems in the 2–7 pH range which is the same for chloride, nucleoside and nucleotide substitutions. The results are indicative of an important degree of outer-sphere hydrogen bonding between the cobaltocomplex and the entering biologically relevant ligands, as expected for these processes.  相似文献   

11.
Toma HE  Sernaglia RL 《Talanta》1995,42(12):1867-1874
The electrochemical and spectroelectrochemical behavior of the binuclear and trinuclear complexes generated from the association of cis- or trans-[Ru(NH3)4(pz)2]3+/2+ (where pz represents pyrazine) and [RuEDTA(H2O)]2−/− complexes has been investigated in aqueous solution. Based on two sets of spectrophotometrically determined equilibrium constants and on the formal redox potentials, the complex network of equilibrium reactions involving mixed valence species has been elucidated.  相似文献   

12.
The complexes trans-[Os(CCPh)Cl(dppe)2] (1), trans-[Os(4-CCC6H4CCPh)Cl(dppe)2] (2), and 1,3,5-{trans-[OsCl(dppe)2(4-CCC6H4CC)]}3C6H3 (3) have been prepared. Cyclic voltammetric studies reveal a quasi-reversible oxidation process for each complex at 0.36–0.39 V (with respect to the ferrocene/ferrocenium couple at 0.56 V), assigned to the OsII/III couple. In situ oxidation of 1–3 using an optically transparent thin-layer electrochemical (OTTLE) cell affords the UV–Vis–NIR spectra of the corresponding cationic complexes 1+–3+; a low-energy band is observed in the near-IR region (11 000–14 000 cm−1) in each case, in contrast to the neutral complexes 1–3 which are optically transparent below 20 000 cm−1. Density functional theory calculations on the model compounds trans-[Os(CCPh)Cl(PH3)4] and trans-[Os(4-CCC6H4CCPh)Cl(PH3)4] have been used to rationalize the observed optical spectra and suggest that the low-energy bands in the spectra of the cationic complexes can be assigned to transitions involving orbitals delocalized over the metal, chloro and alkynyl ligands. These intense bands have potential utility in switching nonlinear optical response, of interest in optical technology.  相似文献   

13.
The equilibrium constant K for the ion-pair formation fac-[Co(pic)3]3+ + C2O22− fac-[Co(pic)3]3+/C2O42−1 where pic = 2-aminomethylpyridine, has been determined spectrophotometrically at 0.35 M (KCl) ionic strength and 25.0°C, using four different calculation approaches. The best results were obtained when the concentration of the minor component (the cobalt complex ion) was not neglected in comparison with the oxalate ion concentration. The value of K (5.3 M−1) increases when the supporting electrolyte is LiCl (K = 8.2 M−1). The effect of the ionic strength variation from 0.35 to 2.0 M (LiCl) was also investigated.  相似文献   

14.
13C and 31P{1H} NMR data at low temperature prompted us to characterize cis-[Rh(CO)2(PR3)Cl] (3) (3a, PR3 = PPh3; 3b, PR3 = PMe2Ph), as surprisingly stable products of the reaction between [{Rh(CO)2(μ-Cl)}2] (1) and tertiary phosphines in toluene (P : Rh = 1). Every attempt to isolate solid 3a led to the cis- and trans- halide-bridged dimers [{Rh(CO)2(μ-Cl)}2] (5a) and 6a which are formed from 3a by slow decarbonylation, a process which is greatly accelerated by the evaporation of the solvent under vacuum.

The analogous reaction of 1 with dimethylphenylphosphine follows a similar pathway; in this case, however, low temperature NMR spectra allowed us to characterize the pentacoordinated dinuclear species [{Rh(CO)2(μ-Cl)}2] (2b) as the unstable intermediate of the bridge-splitting process.

The reaction of 3 with a second equivalent of phosphine (P : Rh = 2) leads, at room temperature, to the well known product trans-[Rh(CO)(PR3)2Cl] (8) accompanied by evolution of CO; however our data show that when the reaction is performed at 200 K, decarbonylation is prevented and spectroscopic evidence of trigonal bipyramidal pentacoordinate [Rh(CO)2(PR3)2Cl] (7), stable only at low temperature, can be obtained.  相似文献   


15.
Three novel compounds, [Co(en)3]2[Zr2(C2O4)7]·2H20(HNU-2, en=ethylenediamine), [Co(NH3)6]· [Ce(CzO4)3(H2O)]·H2O(HNU-3) and [Co(dien)2][Gd(C2On)3]·0.75H2O(HNU-4, dien=dethylenetriamine) were hydro- thermal synthesized based on the templates of [Co(en)3]C13, [C0(NH3)6]C13 and [Co(dien)2]C13, respectively. The Zr4+ Ce3+ and Gd3+ cations are all coordinated by four oxalates to form [M(C2O4)n(H2O)n]m (M=Zr, Ce or Gd; n=0 or 1; m=4 or 5), which are similar to [In(C2O4)4]5- in NKB-1, and can be regarded as 4-connected building units. The [M(C2O4)a(H2O)n]m units are connected via sharing the bis-bidentate bridging oxalate ligands to form binuclears in HNU-2 and 1D "zigzag" chains in HNU-3 and HNU-4. cular building units to design 3D open frameworks with It is suggested that these compounds could be used as mole- zeolite topologies.  相似文献   

16.
The synthesis and characterization of a number of new coordination compounds of PdII with the nitrogen donor 1-tert-butylpyrazole (tBuPzH) are described. Compounds are trans-[Pd(tBuPzH)2Cl2] and the cyclometallated structures [Pd2(tBuPz)2(AcO)2] and [Pd3(tBuPz)2(AcO)4]. All these complexes are mixtures of syn and anti isomers. Also, the chloro-bridged complex [Pd2(tBuPz)2Cl2] has been isolated as an equilibrium mixture of cis and trans isomers. The compounds have been studied by variable temperature 1H- and 13C-NMR spectroscopy.  相似文献   

17.
In this paper, we summarise our recent research interest in the hydrothermal synthesis and structural characterisation of multi-dimensional coordination polymers. The use of N-(phosphonomethyl)iminodiacetic acid (also referred to as H4pmida) in the literature as a versatile chelating organic ligand is briefly reviewed. This molecule plays an important role in the formation of centrosymmetric dimeric [V2O2(pmida)2]4− anionic units, which were first used by us as building blocks to construct novel coordination polymers. Starting with [V2O2(pmida)2]4− in solution, we have isolated [M2V2O2(pmida)2(H2O)10] species (where M2+ = Mn2+, Co2+ or Cd2+) via the hydrothermal synthetic approach, which were then employed for the construction of [CdVO(pmida)(4,4′-bpy)(H2O)2]·(4,4′-bpy)0.5·(H2O), [CoVO(pmida)(4,4′-bpy)(H2O)2]·(4,4′-bpy)0.5, [Co(H2O)6][CoV2O2(pmida)2(pyr)(H2O)2]·2(H2O) and [Cd2V2O2(pmida)2(pyr)2(H2O)4]·4(H2O) by the inclusion of bridging organic ligands in the reactive mixtures, such as pyrazine (pyr) and 4,4′-bipyridine (4,4′-bpy). These materials can contain channel systems, and exhibit magnetic behaviour, not only due to the V4+ centres but also to the transition metal centres which establish the links between neighbouring dimeric [V2O2(pmida)2]4− anionic units. A closely related anionic moiety, [Ge2(pmida)2(OH)2]2−, was engineered to allow the study of such crystalline hybrid materials using one- and two-dimensional high-resolution solid-state NMR.  相似文献   

18.
Two mononuclear RuII complexes of polypyridyl ligands, cis-[Ru(bpy)2(4,4′-bpy)Cl](PF6)·H2O (1) and cis-[Ru(phen)2(CH3CN)2](PF6)2 (2) (bpy=2,2′-bipyridyl, 4,4′-bpy=4,4′-bipyridyl, and PHEN=1,10-phenanthroline), have been synthesized and characterized by elemental analyses, IR and UV–vis spectra. The crystal structures of both complexes have been determined by X-ray diffraction, indicating that each RuII center is hexa-coordinated (RuN5Cl for 1 and RuN6 for 2) and takes a distorted octahedral geometry. The favored feature of both complexes is that they are quite useful complex precursors for further constructing new functional architectures.  相似文献   

19.
The oxidation of Cp2MCl2 (M= Mo, W) with perfluortriazinium tetrafluoroborate, [(FCN)3F]+[BF4], in the presence of a flouride ion acceptor (BF3 or PF5) in SO2 solution yielded the cationic metallocene complexes [Cp2MCl 2]2+[BF4] or [Cp2MCl2] 2+[BF4][PF6] (M = Mo, W), respectively. In these reactions, for the first time the perfluortriazinium cation has proved to be easy to handle and a useful oxidizer in organometallic chemistry. The oxidizer strength of three fluorotriazinium cations, [(XCN)3F]+ (X = F, Cl, H), has been computed ab initio (HF/6 − 31 + G) and calibrated on literature data which were obtained by local density functional calculations. It was anchored to its F+ zero point by an experimental value for KrF+. ab]Die Oxidation von Cp2MCl2 mit (M = MO, W) Perfluortriaziniumtetrafluoroborat, [(FCN)3F]+[BF4], in Anwesenheit eines Fluoridionenakzeptors (BF3 oder PF5) führte in SO2-Lösung zur Bildung der kationischen Metallocen-Komplexe [Cp2MCl2+]2+[BF4]2 bzw. [Cp2MCl2]2+[BF4] [PF6] (M = Mo, W). In diesen Reaktionen konnte erstmals gezeigt werden, daß Perfluortriazinium-Kationen einfach zu handhabende und nützliche Oxidationsmittel im Bereich der metallorganischen Synthese darstellen. Das (Mdationsvermögen von drei Fluorotriazinium-Kationen, [(XCN)3F]+(X = F, Cl, H), wurde ab initio berechnet (HF/6 − 31 + G) und mit Hilfe von Literaturdaten, die mittels local density functional-Berechnungen erhalten und am experimentellen Wert von KrF + bezüglich des F+ Nullpunktes verankert wurden, kalibriert.  相似文献   

20.
Complexes trans-[PtX(L)(PPh3)2]A [1: X = CF3; A = BF4; L = NCNH2, NCNMe2, NCNEt2, or NCNC(NH2)2. 2: X = Cl; A = BPh4; L = NCNMe2 or NCNEt2] and cis-[PtCl(L)(PPh3)2][BPh4] [3: L = NCNH2 or NCNC(NH2)2], which appear to be the first cyanamide or cyanoguanidine complexes of platinum to be reported, have been prepared by treatment of trans-[PtBr(CF3)(PPh3)2] (in CH2Cl2/acetone and in the presence of Ag[BF4]) or of cis-[PtCl2(PPh3)2] (in THF and in the presence of Na[BPh4]), respectively, with the appropriate substrate. In KBr pellets or in solution 1 (L = NCNMe2 or NCNEt2) undergoes ready replacement of the organocyanamide (under the trans influence of CF3) by bromide to regenerate trans-(PtBr(CF3)(PPh3)2]. The X-ray structure of 1 (X = CF3, A = BF4, L = NCNEt2) is also reported, and shows the presence of two apical intramolecular contacts of the metal with two ortho-hydrogen atoms of the phosphines, whereas the amine N atom of the diethylcyanamide is trigonal planar in the linear NCN framework with a delocalized π system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号