首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of planar aryl-substituted bis(imino)pyridine cobalt azide complexes were prepared and evaluated as synthetic precursors for the corresponding cobalt nitrido compounds. Thermolysis or photolysis of two examples resulted in intramolecular C-H activation of the benzylic positions of the aryl substituents. For the mesityl-substituted compound, C-H activation by the putative nitride resulted in formation of a neutral imine ligand and modification of the chelate by hydrogen transfer to the imine carbon.  相似文献   

2.
The oxidation and reduction of a redox-active aryl-substituted bis(imino)pyridine iron dicarbonyl has been explored to determine whether electron-transfer events are ligand- or metal-based or a combination of both. A series of bis(imino)pyridine iron dicarbonyl compounds, [((iPr)PDI)Fe(CO)(2)](-), ((iPr)PDI)Fe(CO)(2), and [((iPr)PDI)Fe(CO)(2)](+) [(iPr)PDI = 2,6-(2,6-(i)Pr(2)C(6)H(3)N═CMe)(2)C(5)H(3)N], which differ by three oxidation states, were prepared and the electronic structures evaluated using a combination of spectroscopic techniques and, in two cases, [((iPr)PDI)Fe(CO)(2)](+) and [((iPr)PDI)Fe(CO)(2)], metrical parameters from X-ray diffraction. The data establish that the cationic iron dicarbonyl complex is best described as a low-spin iron(I) compound (S(Fe) = ?) with a neutral bis(imino)pyridine chelate. The anionic iron dicarbonyl, [((iPr)PDI)Fe(CO)(2)](-), is also best described as an iron(I) compound but with a two-electron-reduced bis(imino)pyridine. The covalency of the neutral compound, ((iPr)PDI)Fe(CO)(2), suggests that both the oxidative and reductive events are not ligand- or metal-localized but a result of the cooperativity of both entities.  相似文献   

3.
In the present paper, the synthesis of new pyridine bis(imine) ligands modified with halogens (Cl, Br, CF3) or alkyl groups (Heptyl, tert-butyl, Phenyl, …) is reported. When coordinated with iron or cobalt dichloride, they yielded complexes which were associated to methylaluminoxane (MAO) to achieve the polymerization of ethylene. It was shown that cobalt catalysts are generally more sensitive to the ligand substitutions than the iron ones. The addition of a chlorine atom on the ligand frame is generally unfavorable. On the contrary, the presence of a bromine atom seems more favorable. Phenyl rings lead to almost completely inactive catalysts, probably because of a too weak coordination to the metal. It was also demonstrated that a mono-substitution of the aryl groups with an electron-withdrawing group (-CF3) is sufficient to yield polymers, whereas, considering the bulkiness of this substituent only, oligomers would have been expected.  相似文献   

4.
The new iron(II)-thiolate complexes [((iPr)BIP)Fe(II)(SPh)(Cl)] (1) and [((iPr)BIP)Fe(II)(SPh)(OTf)] (2) [BIP = bis(imino)pyridine] were prepared as models for cysteine dioxygenase (CDO), which converts Cys to Cys-SO(2)H at a (His)(3)Fe(II) center. Reaction of 1 and 2 with O(2) leads to Fe-oxygenation and S-oxygenation, respectively. For 1 + O(2), the spectroscopic and reactivity data, including (18)O isotope studies, are consistent with an assignment of an iron(IV)-oxo complex, [((iPr)BIP)Fe(IV)(O)(Cl)](+) (3), as the product of oxygenation. In contrast, 2 + O(2) results in direct S-oxygenation to give a sulfonato product, PhSO(3)(-). The positioning of the thiolate ligand in 1 versus 2 appears to play a critical role in determining the outcome of O(2) activation. The thiolate ligands in 1 and 2 are essential for O(2) reactivity and exhibit an important influence over the Fe(III)/Fe(II) redox potential.  相似文献   

5.
The number of active centers C p in the homogeneous complexes LCoCl2 and LVCl3 (L = 2,6-(2,6-R2C6H3N=CMe)2C5H3N; R = Me, Et, t Bu) and the propagation rate constants k p have been determined by the radioactive 14CO quenching of ethylene polymerization on these complexes in the presence of the methylaluminoxane (MAO) activator. For the systems studied, a significant portion of the initial complex (up to 70%) transforms into polymerization-active centers. The catalysts based on the cobalt complexes are single-site, and the constant k p in these systems is independent of the volume of substituent R in the ligand, being (2.4?3.5) × 103 L mol?1 s?1 at 35°C. The much larger molecular weight of the polymer formed on the complex with the tert-butyl substituent in the aryl rings of the ligand compared to the product formed on the complex with the methyl substituent is due to the substantial (~11-fold) decrease in the rate constant of chain transfer to the monomer. At the early stages of the reaction (before 5 min), the vanadium complexes contain active centers of one type only, for which k p = 2.6 × 103 L mol?1 s?1 at 35°C. An increase in the polymerization time to 20 min results in the appearance, in the vanadium systems, of new, substantially less reactive centers on which high-molecular-weight polyethylene forms. The number of active centers C p in the 2,5-tBu2LCoCl2 and 2,6-Et2LVCl3 systems with the MAO activator increases as the polymerization temperature is raised from 25 to 60°C. The activation energies of the chain propagation reaction (E p) have been calculated. The value of E p for complex 2,5-tBu2LCoCl2 is 4.5 kcal/mol. It is assumed that the so-called “dormant” centers form in ethylene polymerization on the 2,6-Et2LVCl3 complex, and their proportion increases with a decrease in the polymerization temperature. Probably, the anomalously high value E p = 14.2 kcal/mol for the vanadium system is explained by the formation of these “dormant” centers.  相似文献   

6.
A family of bis(imino)pyridine iron neutral-ligand derivatives, ((iPr)PDI)FeL(n) ((iPr)PDI = 2,6-(2,6-iPr2-C6H3N=CMe)2C6H3N), has been synthesized from the corresponding bis(dinitrogen) complex, ((iPr)PDI)Fe(N2)2. When L is a strong-field ligand such as tBuNC or a chelating alkyl diphosphine such as DEPE (DEPE = 1,2-bis(diethylphosphino)ethane), a five-coordinate, diamagnetic compound results with no spectroscopic evidence for mixing of paramagnetic states. Reducing the field strength of the neutral donor to principally sigma-type ligands such as tBuNH2 or THT (THT = tetrahydrothiophene) also yielded diamagnetic compounds. However, the 1H NMR chemical shifts of the in-plane bis(imino)pyridine hydrogens exhibit a large chemical shift dispersion indicative of temperature-independent paramagnetism (TIP) arising from mixing of an S = 1 excited state via spin-orbit coupling. Metrical data from X-ray diffraction establish bis(imino)pyridine chelate reduction for each structural type, while M?ssbauer parameters and NMR spectroscopic data differentiate the spin states of the iron and identify contributions from paramagnetic excited states.  相似文献   

7.
Enantiopure C(1)-symmetric bis(imino)pyridine cobalt chloride, methyl, hydride, and cyclometalated complexes have been synthesized and characterized. These complexes are active as catalysts for the enantioselective hydrogenation of geminal-disubstituted olefins.  相似文献   

8.
A new spin on polymers: the title cations comprise low-spin Co(II) centers with neutral bis(imino)pyridine chelating ligands. These complexes serve as single-component ethylene polymerization catalysts and offer insight into the mechanism of chain growth and catalyst deactivation, which occurs by forming inactive cationic bis(imino)pyridine cobalt complexes with a diethyl ether ligand.  相似文献   

9.
Reactions of CrCl3(thf)3 with bis(imino)pyridines gave a series of {bis(imino)pyridine}chromium(III) trichloride complexes, {2,6‐(RN?CMe)2C5H3N}CrCl3 [R = C6HPr2‐2,6 ( 1 ), C6H3Et2‐2,6 ( 2 ), C6H3Me2‐2,6 ( 3 ), C6H2Me3‐2,4,6 ( 4 ), C6H3Me2‐3,5 ( 5 ), C6H5 ( 6 ), cyclohexyl ( 7 ), 2‐methyl‐1‐naphthyl ( 8 ), C6H3F2‐2,6 ( 9 ), C6H3Br2‐2,6 ( 10 ), C6F5 ( 11 )]. Pseudo‐octahedral geometries of 6 , 10 , and 11 were revealed by X‐ray crystallography. The complexes having bulky substituents such as 1 – 4 showed high activity for ethylene polymerization in combination with modified methylaluminoxane (MMAO) to give linear polyethylenes. In sharp contrast, the pentafluorophenyl complex 11 /modified methylaluminoxane system was found to be moderately active for ethylene homopolymerization to give moderately branched polyethylene with only ethyl branches. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3368–3375, 2005  相似文献   

10.
Data on ethylene polymerization on homogeneous and supported catalysts based on 2,6-bis(imino)pyridyl Fe(II) complexes activated by trialkylaluminums are considered (activity, the molecular-weight characteristics of polymers, the number of active sites, and the propagation rate constants). Unlike homogeneous systems, the supported catalysts prepared with the use of various carriers (SiO2, Al2O3, and MgCl2) exhibited high stability and activity at 70–80°C and produced high-molecular-weight polyethylene with a broad molecular-weight distribution (MWD). The molecular weights and MWDs of polymers and the propagation rate constant depended on the nature of the carrier only slightly. The reasons for an unusual effect of an increase in the activity of the supported catalysts in ethylene polymerization in the presence of hydrogen are discussed.  相似文献   

11.
Square planar iron methyl complexes containing bis(imino)pyridine (PDI) ligands have been prepared by reductive alkylation of the corresponding ferrous dichloride; dialkylation is observed upon treatment with a larger alkyl lithium.  相似文献   

12.
Bis(imino)pyridine iron complexes bearing ether and thioether backbone substituents have been synthesized and evaluated for the polymerization of ethylene. The methoxy derivative is inactive whereas bulky phenoxides or thioether derivatives afford activities as high as the most active systems reported to date.  相似文献   

13.
A family of cationic, neutral, and anionic bis(imino)pyridine iron alkyl complexes has been prepared, and their electronic and molecular structures have been established by a combination of X-ray diffraction, Mo?ssbauer spectroscopy, magnetochemistry, and open-shell density functional theory. For the cationic complexes, [((iPr)PDI)Fe-R][BPh(4)] ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)N═CMe)(2)C(5)H(3)N; R = CH(2)SiMe(3), CH(2)CMe(3), or CH(3)), which are known single-component ethylene polymerization catalysts, the data establish high spin ferrous compounds (S(Fe) = 2) with neutral, redox-innocent bis(imino)pyridine chelates. One-electron reduction to the corresponding neutral alkyls, ((iPr)PDI)Fe(CH(2)SiMe(3)) or ((iPr)PDI)Fe(CH(2)CMe(3)), is chelate-based, resulting in a bis(imino)pyridine radical anion (S(PDI) = 1/2) antiferromagnetically coupled to a high spin ferrous ion (S(Fe) = 2). The neutral neopentyl derivative was reduced by an additional electron and furnished the corresponding anion, [Li(Et(2)O)(3)][((iPr)PDI)Fe(CH(2)CMe(3))N(2)], with concomitant coordination of dinitrogen. The experimental and computational data establish that this S = 0 compound is best described as a low spin ferrous compound (S(Fe) = 0) with a closed-shell singlet bis(imino)pyridine dianion (S(PDI) = 0), demonstrating that the reduction is ligand-based. The change in field strength of the bis(imino)pyridine coupled with the placement of the alkyl ligand into the apical position of the molecule induced a spin state change at the iron center from high to low spin. The relevance of the compounds and their electronic structures to olefin polymerization catalysis is also presented.  相似文献   

14.
Reaction of benzotriazole with 2,6-bis(bromomethyl)pyridine and 2,6-pyridinedicarbonyl dichloride yields the tridentate ligands 2,6-bis(benzotriazol-1-ylmethyl)pyridine (1) and 2,6-bis(benzotriazol-1-ylcarbonyl) pyridine (2). The molecular structures of the ligands were determined by single-crystal X-ray diffraction. These ligands react with CrCl3(THF)3 in THF to form neutral complexes, [CrCl3{2,6-bis(benzotriazolyl)pyridine-N,N,N}] (3, 4), which are isolated in high yields as air stable green solids and characterized by mass spectra (ESI), FTIR spectroscopy, UV–Visible, thermogravimetric analysis (TGA), and magnetic measurements. After reaction with methylaluminoxane (MAO), the chromium(III) complexes are active in the polymerization of ethylene showing a bimodal molecular weight distribution. A DFT computational investigation of the polymerization reaction mechanism shows that the most likely reaction pathway originates from the mer configuration when the spacer is CH2 (complex 3) and from the fac configuration when the spacer is CO (complex 4).  相似文献   

15.
16.
The structure and electrochemical properties of a series of bis(imino)pyridine Co(II) complexes (NNN)CoX(2) and [(NNN)(2)Co][PF(6)](2) (NNN = 2,6-bis[1-(4-R-phenylimino)ethyl]pyridine, with R = CN, CF(3), H, CH(3), OCH(3), N(CH(3))(2); NNN = 2,6-bis[1-(2,6-(iPr)(2)-phenylimino)ethyl]pyridine and X = Cl, Br) were studied using a combination of electrochemical and theoretical methods. Cyclic voltammetry measurements and DFT/B3LYP calculations suggest that in solution (NNN)CoCl(2) complexes exist in equilibrium with disproportionation products [(NNN)(2)Co](2+) [CoCl(4)](2-) with the position of the equilibrium heavily influenced by both the solvent polarity and the steric and electronic properties of the bis(imino)pyridine ligands. In strong polar solvents (e.g., CH(3)CN or H(2)O) or with electron donating substituents (R = OCH(3) or N(CH(3))(2)) the equilibrium is shifted and only oxidation of the charged products [(NNN)(2)Co](2+) and [CoCl(4)](2-) is observed. Conversely, in nonpolar organic solvents such as CH(2)Cl(2) or with electron withdrawing substituents (R = CN or CF(3)), disproportionation is suppressed and oxidation of the (NNN)CoCl(2) complexes leads to 18e(-) Co(III) complexes stabilized by coordination of a solvent moiety. In addition, the [(NNN)(2)Co][PF(6)](2) complexes exhibit reversible Co(II/III) oxidation potentials that are strongly dependent on the electron withdrawing/donating nature of the N-aryl substituents, spanning nearly 750 mV in acetonitrile. The resulting insight on the regulation of redox properties of a series of bis(imino)pyridine cobalt(II) complexes should be particularly valuable to tune suitable conditions for reactivity.  相似文献   

17.
2,6‐Bis(imino)pyridyl complexes of Fe and Co in combination with methylalumoxane form very active homogeneous catalytic systems for polymerization of ethylene. GPC analysis of the polymers prepared with the complexes indicates that the Co complexes produce single‐center catalysts whereas the Fe complexes produce catalysts with numerous types of active centers. Different centers in the latter catalyst systems respond differently to reaction conditions such as the reaction duration, the [MAO]:[Fe] ratio, the ethylene concentration, etc. The article examines the effects of reaction variables on the performance of both types of catalysts and proposes an explanation for the complex behavior of the catalysts derived from the Fe complexes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6159–6170, 2006  相似文献   

18.
Polyethylene–clay nanocomposites were synthesized by in situ polymerization with 2,6‐bis[1‐(2,6‐diisopropylphenylimino)ethyl] pyridine iron(II) dichloride supported on a modified montmorillonite clay pretreated with methylaluminoxane (MAO). The catalysts and the obtained nanocomposites were examined with wide‐angle X‐ray scattering. The exfoliation of the clay was further established by transmission electron microscopy. Upon the treatment of the clay with MAO, there was an increase in the d‐spacing of the clay galleries. No further increase in the d‐spacing of the galleries was observed with the iron catalyst supported on the MAO‐treated clay. The catalyst activity for ethylene polymerization was independent of the Al/Fe ratio. The exfoliation of the clay inside the polymer matrix depended on various parameters, such as the clay content, catalyst content, and Al/Fe ratio. The crystallinity percentage and crystallite size of the nanocomposites were affected by the degree of exfoliation of the clay. Moreover, when ethylene was polymerized with a mixture of the homogeneous iron(II) catalyst and clay, the degree of exfoliation was significantly lower than when the polymerization was performed with a preformed clay‐supported catalyst. This observation suggested that in the supported catalyst, at least some of the active centers resided within the galleries of the clay. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 304–318, 2005  相似文献   

19.
The two-dimensional and three-dimensional quantitative structure–property relationship (2D- and 3D-QSPR) approaches are applied to investigate the catalytic performance for a total data set of 55 bis(imino)pryridine iron and cobalt complexes, including the catalytic activity, molecular weight, and melting temperature of the product. The obtained models for the catalytic performance of interest exhibit good results by both 2D- and 3D-QSPR modeling, meanwhile higher predictive and validation powers observed in the 3D type. The modeling results indicate that the bulky substituents on ortho-position of the singular side phenyl ring and positive charge on para-position of the phenyl ring within the ligand are favorable to catalytic activity, while unfavorable to the molecular weight of product. Based on the obtained QSPR models, four new complexes are designed and predicted with good catalytic activity and very high molecular weight, which are in good agreement with our recent experimental report. © 2019 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号