首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photochemical reaction of piperazine with C70 produces a mono‐adduct (N(CH2CH2)2NC70) in high yield (67 %) along with three bis‐adducts. These piperazine adducts can combine with various Lewis acids to form crystalline supramolecular aggregates suitable for X‐ray diffraction. The structure of the mono‐adduct was determined from examination of the adduct I2N(CH2CH2)2NI2C70 that was formed by reaction of N(CH2CH2)2NC70 with I2. Crystals of polymeric {Rh2(O2CCF3)4N(CH2CH2)2NC70}n?nC6H6 that formed from reaction of the mono‐adduct with Rh2(O2CCF3)4 contain a sinusoidal strand of alternating molecules of N(CH2CH2)2NC70 and Rh2(O2CCF3)4 connected through Rh?N bonds. Silver nitrate reacts with N(CH2CH2)2NC70 to form black crystals of {(Ag(NO3))4(N(CH2CH2)2NC70)4}n?7nCH2Cl2 that contain parallel, nearly linear chains of alternating (N(CH2CH2)2NC70 molecules and silver ions. Four of these {Ag(NO3)N(CH2CH2)2NC70}n chains adopt a structure that resembles a columnar micelle with the ionic silver nitrate portion in the center and the nearly non‐polar C70 cages encircling that core. Of the three bis‐adducts, one was definitively identified through crystallization in the presence of I2 as 12{N(CH2CH2)2N}2C70 with addends on opposite poles of the C70 cage and a structure with C2v symmetry. In 12{I2N(CH2CH2)2N}2C70, individual 12{I2N(CH2CH2)2N}2C70 units are further connected by secondary I2???N2 interactions to form chains that occur in layers within the crystal. Halogen bond formation between a Lewis base such as a tertiary amine and I2 is suggested as a method to produce ordered crystals with complex supramolecular structures from substances that are otherwise difficult to crystallize.  相似文献   

2.
The complexes [(1,3-C6H8)2IrR] and [(1,3-C7H10)2IrR] (R = CH3, C6H5) are obtained by reaction of the corresponding chloro compounds with RLi. Interaction of [Ir(COD)Cl]2 (COD = 1,5-cyclooctadiene) with CH3Li in the presence of 1,3-cyclohexadiene or isoprene yields [(COD)(1,3-C6H8IrCH3] and [(COD)(C5H8IrCH3], respectively. The products of the reaction of chlorodicyclodieneiridium with n-C4H9Li depend on the ring size of the cyclodiene ligands; with 1,3-cyclohexadiene [(1,3-C6H8)2IrH] is formed while with 1,3-cycloheptadiene [(1,3-C7H10)(C7H9)Ir] is obtained together with [(1,3-C7H10)3Ir2(μ-H)2]. Chemical and spectroscopic properties of the new compounds are discussed.  相似文献   

3.
The triphenylsiloxy-substituted cyclotriphosphazenes, N3P3Cl5OSiPh3, gem-N3P3Cl4(OSiPh3)2, N3P3(OSiPh3)6, and N3P3(OPh)5OSiPh3, have been prepared. The synthesis of gem-N3P3Cl4(OSiPh3)2 involves the reaction of (NPCl2)3 with Ph3SiONa to form the intermediates gem-N3P3Cl4(OSiPh3)2(ONa) and gem-N3P3Cl4(ONa)2, which yield gem-N3P3Cl4(OSiPh3)2 when treated with Ph3SiCl. The compounds N3P3Cl5OSiPh3 and N3P3(OSiPh3)0 are formed by the condensation reactions of N3P3Cl5OBun and N3P3(OBun)6, respectively, with Ph3SiCl. The compound N3P3(OPh)5OSiPh3 is synthesized by the reaction between N3P3(OPh)5Cl and Et3SiONa to first give the intermediate N3P3(OPh)5ONa, which yields N3P3(OPh)5OSiPh3 when reacted with Ph3SiCl. The structural characterization and properties of these compounds are discussed. The crystal and molecular structure of gem-N3P3Cl4(OSiPh3)2 has been investigated by single-crystal X-ray diffraction techniques. The crystals are monoclinic with the space group P21/c with a = 16.850(8), b = 12.829(4), c = 18.505(15) Å, and β = 101.00(6)° with V = 3927 Å3 and Z = 4. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Formation of Organosilicon Compounds. 73. Reactions of C-chlorinated 1,3-Disilapropanes with CH3MgCl (Cl3Si)2CCl2 reacts with an excess of meMgCl (me = CH3) in Et2O (diethylether) forming (me3Si)22C?CH2 mainly besides Si-methylated 1,3-disilapropanes with CmeCl, CHCl, CH2 groups [6]. For investigating the mechanism of formation of the methylidengroup reactions were carried out with differently Si-methylated and Si-chlorinated 2-methyl-1-2-chloro-1,3-disilapropanes and 2,2-dichloro-1,3-disilapropanes. Whereas (me3Si)2CmeCl reacts neither with meMgCl nor with Lime. it forms (me3Si)2C?CH2 and (me3Si)2CmeH with Li or Mg resp. The reaction starts with the metallation to (me3Si)2CmeLi and (me3Si)2Cme(MgCl) resp., followed by elimination of LiH and HMgCl resp. with formation of (me3Si)2C?CH2. LiH and HMgCl resp. reduces (me3Si)2CmeCl to (me3Si)2CmeH. This mechanism is supported by the reactions of (me3Si)2CCl(CD3). The Si-chlorination increases the reactivity of the CmeCl group and the created C?CH2 group favours Si-methylation. The CCl2 group is more reactive than the CmeCl group; (me3Si)2CCl2 already forms the methyliden group with meMgCl in Et2O via the not isolated intermediate (me3Si)2CCl(MgCl). which prefers the methylation to (me3Si)2Cme(MgCl). The n.m.r. data of the investigated compounds are given.  相似文献   

5.
The interaction of powdered niobium oxide with molten potassium and barium nitrate salts containing KOH was studied. It was shown that KNbO3 can be obtained with the use of binary mixtures of the KOH-KNO3 system. The BaNb2O6 compound can be synthesized in melts of the KNO3-Ba(NO3)2 system. The treatment of Nb2O5 with melts of the system KNO3-Ba(NO3)2-KOH with various KOH percentages allowed us to obtain mixtures of Ba5Nb4O15.33 with Nb12O29 or Ba5Nb4O15.48 with K0.8Ba0.2NbO3.  相似文献   

6.
The structure of precursors is used to control the formation of six possible structural isomers that contain four structural units of PbSe and four structural units of NbSe2: [(PbSe)1.14]4[NbSe2]4, [(PbSe)1.14]3[NbSe2]3[(PbSe)1.14]1[NbSe2]1, [(PbSe)1.14]3[NbSe2]2[(PbSe)1.14]1[NbSe2]2, [(PbSe)1.14]2[NbSe2]3[(PbSe)1.14]2[NbSe2]1, [(PbSe)1.14]2[NbSe2]2[(PbSe)1.14]1[NbSe2]1[(PbSe)1.14]1[NbSe2]1, [(PbSe)1.14]2[NbSe2]1[(PbSe)1.14]1[NbSe2]2[(PbSe)1.14]1[NbSe2]1. The electrical properties of these compounds vary with the nanoarchitecture. For each pair of constituents, over 20 000 new compounds, each with a specific nanoarchitecture, are possible with the number of structural units equal to 10 or less. This provides opportunities to systematically correlate structure with properties and hence optimize performance.  相似文献   

7.
In the Sc2O3---Ga2O3---CuO, Sc2O3---Ga2O3---ZnO, and Sc2O3---Al2O3---CuO systems, ScGaCuO4, ScGaZnO4, and ScAlCuO4 with the YbFe2O4-type structure and Sc2Ga2CuO7 with the Yb2Fe3O7-type structure were obtained. In the In2O3---A2O3---BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, or Zn), InGaFeO4, InGaNiO4, and InFe3+MgO4 with the spinel structure, InGaZnO4, InGaMgO4, and InAlCuO4 with the YbFe2O4-type structure, and In2Ga2MnO7 and In2Ga2ZnO7 with the Yb2Fe3O7-type structure were obtained. InGaMnO4 and InFe2O4 had both the YbFe2O4-type and spinel-type structures. The revised classification for the crystal structures of AB2O4 compounds is presented, based upon the coordination numbers of constituent A and B cations.  相似文献   

8.
The complexes M(CO)2(PPh3)3 (I, M = Fe; II, M = Ru) readily react with H2 at room temperature and atmospheric pressure to give cis-M(H)2(CO)2(PPh3)2 (III, M = Fe;IV,M = Ru). I reacts with O2 to give an unstable compound in solution, in a type of reaction known to occur with II which leads to cis-Ru(O2)(CO)2(PPh3)2(V). Even compound IV reacts with O2 to give V with displacement of H2; this reaction has been shown to be reversible and this is the first case where the displacement of H2 by O2 and that of O2 by H2 at a metal center has been observed. III and IV are reduced to M(CO)3(PPh3)2 by CO with displacement of H2; Ru(CO)3- (PPh3)2 is also formed by treatment of IV with CO2, but under higher pressure. Compounds II and IV react with CH2CHCN to give Ru(CH2CHCN)(CO)2- (PPh3)2(VI) which reacts with H2 to reform the hydride IV.cis-Ru(H)2(CO)2(PPh3)2(IV) has been studied as catalyst in the hydrogenation and isomerization of a series of monoenes and dienes. The catalysts are poisoned by the presence of free triphenylphosphine. On the other hand the ready exchange of H2 and O2 on the “Ru(CO)2(PPh3)2” moiety makes IV a catalyst not irreversibly poisoned by the presence of air. It has been found that even Ru(CO)2(PPh3)3(II) acts as a catalyst for the isomerization of hex-1-ene at room temperature under an inert atmosphere.  相似文献   

9.
CF3I(NO3)2 is formed from the reactions of CF3IF2 or CF3IO with N2O5 as well as CF3I with ClNO3. During the reactions of CF3IF2 with N2O5 or CF3I with ClNO3 the intermediate products CF3IF(NO3) or CF3ICl(NO3) can be identified. The preparations, properties, 19F-nmr spectra and the thermal decomposition of CF3I(NO3)2 are described.  相似文献   

10.
Organoantimony Compounds. V. The Reactivity of Phenyl Stibine C6H5SbH2, synthesized by the reduction of C6H5SbCl2 with LiBH4, reacts with LiR under certain conditions forming (C6H5Sb)n and H2 or give by a partially elimination of H2 stibides with a different structure. The latter react with alkyl and aryl halides forming tert. stibines which may be characterized as the corresponding dibromides. The preparation of C6H5SbNa2 and its reaction with C2H5Br, Cl(CH2)4Cl and C6H5(Cl)C?N? N?C(Cl)C6H5 are described.  相似文献   

11.
Reactions of ligands 2-vinylpyridine 1, 4-vinylpyridine 2, 2-allylpyridine 3, 1-allylpyrazole 4, acrylonitrile 5 and allylcyanide 6 with the metallocene derivatives [Mo(η5-C5H5)2H3][PF6] 7, [Mo(η5-C5H5)2HI] 8, [W(η5-C5H5)2H3] [PF6] 9, [Mo(η5-C5H5)2H2] 10, [M(η5-C5H5)2Br2], M = Mo 11, M = W 12 are described. Reaction of 7 with 1, 8 with 1, 3 with 8 and 4 with 8 gave mixtures of metallocyle isomers resulting from coordination of the nitrogen atom to molybdenum followed by internal hydrometallation; reaction of 11 with 1 gave an olefinic π complex; reaction of either 9 or 11 with 1 gave intractable oils; reactions of 8 with 2, 11 with 5, 12 with 5, 11 with 6 and 12 with 6 yielded monosubstituted products in which the ligand is N-coordinated.  相似文献   

12.
Preparation and Properties of 3-(N,N-Dimethylamino)propyl Thallium Compounds TlCl3 reacts with Me2NCH2CH2CH2Li in molar ratio 1:2 with formation of (Me2NCH2CH2CH2)2TlCl ( 1 ) which can be transfered with MeLi into (Me2NCH2CH2CH2)2TlMe ( 2 ) and with excess of Me2NCH2CH2CH2Li into (Me2NCH2CH2CH2)3Tl ( 3 ) respectively. Comproportionation of 1 with TlCl3 yields rather instable Me2NCH2CH2CH2TlCl2 ( 4 ) from which Me2NCH2CH2CH2TlMe2 ( 5 ) can be obtained by alkylation with MeLi. 1–3 and 5 were characterized by elemental analysis, mass spectra, 1H- and 13C-n.m.r. spectra.  相似文献   

13.
Amidometallates of Lanthanum and Gadolinium and the Conversion of Lanthanum, Gadolinium, and Scandium with Ammonia By reaction of the metals with NsNH2 and NH3 in the hightemperature- autoclave Na3[La(NH2)6], Na3[Gd(NH2)6], and Na[Gd(NH2)4] were prepared, but not any compound of Sc. By corresponding experiments with NH4I only La(NH2)3, GdN, and ScH2 were obtained. Na3[La(NH2)6] and Na3[Gd(NH2)6] are isotypic with Na3[Y(KH2)6], Na[Gd(NH2)4] with Na[Yb((NH2)4]. The thermal behaviour of the prepared amides was characterized by DTA and tensimetry.  相似文献   

14.
From the reaction of Rh2(O2CCH3)4(MeOH)2, in hot acetic acid with PPh3 the monometalated intermediate Rh2(O2CCH3)3[(C6H4)PPh2](HO2CCH3)2 has been isolated and characterized by an X-ray study. This compound rapidly reacts with an excess of PPh3 in dichloromethane at room temperature to give Rh2(O2CCH3)2-[(C6H4)PPh2]2(PPh3)2 with a head-to-tail structure. The same procedure at higher temperatures gives a mixture of this compound and another doubly metalated compound with a head-to-head structure.  相似文献   

15.
Reactions of Benzoylating Agents with Phosphorous Acid H3PO3 reacts with (C6H5CO)2O to yield C6H5C(OH)(PO3H2)2 1 . In contrast, the reaction with C6H5COCl proceeds with the formation of C6H5CCl(PO3H2)2 2 and p-ClC6H4CH(PO3H2)2 3 . The best yields of 2 and 3 are obtained, if the reaction are carried out under pressure. 2 is rapidly hydrolysed in alkaline solution at elevated temperatures to 1 .  相似文献   

16.
Substitution Reactions with Sulphur Diimides Substituted sulphur diimides are obtained by the reactions of (CH3)3Si? N?S?N? Si(CH3)3 with CH3SO2Cl and CCl3SCl or with P2O3F4 and (CH3)3Si? N?S?N? SN(CH3)2. S4N4 reacts with (CH3)2Si[N(CH3)2]2 to from (CH3)2Si(N(CH3)2)? N?S?N? SN(CH3)2 while S3N2Cl2 yields (CH3)2Si(Cl)? N?S?N? SN(CH3)2. It is possible to substitute the chlorine atom by diethylamine in the last compound. The new compounds are intermediates for the syntheses of cyclic sulphur-nitrogen compounds. They were characterized by mass-, ir-, 1H-nmr spectra and elemental analysis.  相似文献   

17.
Synthesis and Structure of Ammine and Amido Complexes of Iridium The reaction of (NH4)2[IrCl6] with NH4Cl at 300 °C in a sealed glass ampoule yields the iridium(III) ammine complex (NH4)2[Ir(NH3)Cl5], which crystallizes isotypically with K2[Ir(NH3)Cl5] in the orthorhombic space group Pnma with Z = 4, and a = 1350.0(2); b = 1028.5(3); c = 689.6(2) pm. The reaction of (NH4)2[IrCl6] with NH3 at 300 °C, however, gives the already known [Ir(NH3)5Cl]Cl2 beside a small amount of [Ir(NH3)4Cl2]Cl2. In pure form [Ir(NH3)5Cl]Cl2 is obtained by ammonolysis of (NH4)2[Ir(NH3)Cl5] at 300 °C with NH3. [Ir(NH3)4Cl2]Cl2 crystallizes triclinic (P1, Z = 1, a = 660,2(3); b = 680,4(3); c = 711,1(2) pm; α = 103,85(2)°, β = 114,54(3)°, γ = 112,75(2)°). The structure contains Cl anions and [Ir(NH3)4Cl2]2+ cations with a trans position of the Cl atoms. Upon reaction of [Ir(NH3)5Cl]Cl2 with Cl2 one ammine ligand is eliminated yielding [Ir(NH3)4Cl2]Cl, which is transformed to orthorhombic [Ir(NH3)4(OH2)Cl]Cl2 (Pnma, Z = 4, a = 1335,1(3); b = 1047,9(2); c = 673,4(2) pm) by crystallization from water. In the octahedral complex [Ir(NH3)4(OH2)Cl]2+ the four ammine ligands have an equatorial position, whereas the Cl atom and the aqua ligand are arranged axial. Oxidation of (NH4)2[Ir(NH3)Cl5] with Cl2 at 330 °C affords the tetragonal IrIV complex (NH4)[Ir(NH3)Cl5] (P4nc, Z = 2, a = 702.68(5); c = 912.89(9) pm). Its structure was determined using the powder diagram. Oxidation of (NH4)2[Ir(NH3)Cl5] with Br2 in water, on the other hand, gives (NH4)2[IrBr6] crystallizing in the K2[PtCl6] type. Oxidation of (PPh4)2[Ir(NH3)Cl5] with PhI(OAc)2 in CH2Cl2 affords the IrV amido complex (PPh4)[Ir(NH2)Cl5].  相似文献   

18.
Reactions of R4Sb2 (R = Me, Et) with (Me3SiCH2)3M (M = Ga, In) and Crystal Structures of [(Me3SiCH2)2InSbMe2]3 and [(Me3SiCH2)2GaOSbEt2]2 The reaction of (Me3SiCH2)3In with Me2SbSbMe2 gives [(Me3SiCH2)2InSbMe2]3 ( 1 ) and Me3SiCH2SbMe2. [(Me3SiCH2)2GaOSbEt2]2 ( 2 ) is formed by the reaction of (Me3SiCH2)3Ga with Et2SbSbEt2 and oxygen. The syntheses and the crystal structures of 1 and 2 are reported.  相似文献   

19.
The complex Mo(CO)2L2 [L = S2CNEt2] reacts with acetylenes to yield both Mo(CO)(RC2R')L2 and Mo(RC2R')2L2, with diazenes giving Mo(RN2R')L2 and Mo(RC2R')2L2, with diazenes giving Mo(RN2R')L2 and Mo(RN2R')2L2, and with CO and PPh3 to form Mo(CO)3L2 and Mo(CO)2(PPh3)L2.  相似文献   

20.
The silsesquioxane [((C6H11)7Si7O9)(OH)3] (LH3) was reacted with [M(C5H5)2Cl2] (M = Ti, Zr, Hf) and with [Ti(C5H5)Cl3]. The reaction with [Ti(C5H5)Cl3] produced [Ti(C5H5)L], whereas the reaction with [Ti(C5H5)2Cl2] produced a mixture of [Ti(C5H5)L]n. (n = 1, 2) as determined by NMR spectroscopy. Only [Ti(C5H5)L] could be isolated from the mixture. The reaction with [M(C5H5)2Cl2] (M = Zr, Hf) produced oligomeric species which contained no cyclopentadienyl ligands and which were formulated as containing trimeric [M3L4Cl] anions on the basis of analytical and spectroscopic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号