首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
This paper presents cold-rolling and annealing methods to obtain a high-magnetic induction in inhibitor-free 0.1-mm-thick 3% silicon–iron sheets containing 18 or 150 ppm sulfur. In case of the two-step cold-rolling, the sheets containing 150 ppm sulfur showed a strong {1 0 0} final texture at 400 °C/h, and some fraction of {1 1 0} component was observed at 25 °C/h. However, three-step cold-rolling resulted in a sharp {1 1 0}〈0 0 1〉 final texture at 25 °C/h. This is due to the difference in intensity ratio of {1 0 0}〈0 1 1〉 to {1 1 1}〈1 1 2〉 in the cold-rolling texture which influences the nucleation of {1 1 0}〈0 0 1〉 component and the selective growth kinetics of various grains. In case of 18 ppm sulfur, the final texture was mainly composed of a sharp {1 1 0}〈0 0 1〉 component even at 400 °C/h, due to the relatively low segregation concentration.  相似文献   

2.
We measured temperature dependence of a spin polarization of field-emitted electrons from a single-crystalline magnetite (Fe3O4) whisker with 〈1 1 0〉 orientation. The spin polarization of emitted electrons began to increase above 130 K corresponding to the temperature of Verwey point (Tv). The increase is considered as reflection of the change of the spin state near the Fermi level due to the Verwey transition. Our experimental results support a localization of t2g orbital electrons below the Verwey point and a model of charge ordering for magnetite.  相似文献   

3.
This study investigated the dependence of surface blistering and exfoliation phenomena on post-annealing time in H+-implanted Si〈1 1 1〉. Czochralski-grown n-type Si〈1 1 1〉 wafers were room-temperature ion-implanted with 40 keV hydrogen monomers to a fluence of 5×1016 cm−2, and followed by furnace annealing treatments at 400 and 500 °C for various durations ranging from 0.25 to 3 h. The corresponding analysis results for Si〈1 0 0〉 [1] (Liang et al., 2008); [2] (Bai, 2007) were adopted in order to make comparisons. The evolution of blister formation and growth for Si〈1 1 1〉 at 400 °C has a shorter characteristic time compared to Si〈1 0 0〉. However, there is a longer characteristic time when annealing takes place at 500 °C. In addition, no craters were observed for Si〈1 1 1〉 annealed at 400 °C while the opposite is true for Si〈1 0 0〉. The evolution of crater development for Si〈1 1 1〉 annealed at 500 °C has a longer characteristic time compared to Si〈1 0 0〉. These results are attributed to the fact that compared to Si〈1 0 0〉, Si〈1 1 1〉 has a smaller surface binding energy of silicon atoms and a larger areal number density of silicon atoms on the plane perpendicular to the incident-ion axis. Furthermore, Si〈1 1 1〉 has a greater areal number density, smaller diameter, and a similar covered-area fraction of optically-detectable blisters compared to Si〈1 0 0〉. However, Si〈1 1 1〉 has a lower areal number density and a smaller covered-area fraction of craters than does Si〈1 0 0〉. Increasing post-annealing temperature from low (e.g. 400 °C) to high (e.g. 500 °C) revealed that Si〈1 1 1〉 tends to create more blisters while Si〈1 0 0〉 tends to develop larger blisters as well as create more craters.  相似文献   

4.
The adsorption of α-sexithiophene (6T) on Cu(1 1 0), Cu(1 1 0)-(2 × 1)O and the mesoscopically patterned Cu-O striped surface have been studied by STM (scanning tunnelling microscopy), XPS (X-ray photoelectron spectroscopy) and NEXAFS (near edge X-ray absorption fine structure). The molecular resolution of the STM allowed to determine the orientation and local order of the molecules in the submonolayer and monolayer regime. It is shown that the 6T molecules align with their long molecular axis along the densely packed copper rows on Cu(1 1 0) and along the Cu-O rows on the Cu(1 1 0)-(2 × 1)O surface. On the striped phase with alternating copper and Cu-O regions the molecules adsorb first on the Cu regions and after complete filling of these regions, on the Cu-O. The orientation is the same on both areas as on the respective pristine surfaces with the only exception that the molecules reorient by 90° if the width of the copper regions is smaller than the molecular length. The NEXAFS measurements allowed for a determination of the adsorption geometry of the molecules: while 6T lies flat on the surface on clean copper, the molecular planes are inclined with an angle as high as 39° with respect to the substrate on (2 × 1)O. For the latter, this inclination angle is 4° higher than in the bulk crystal structure of 6T observed for thicker films to release stress and allow commensurability with the substrate lattice, while for the former it is a result of the aromatic system bonding to the Cu(1 1 0) surface, as confirmed by XPS.  相似文献   

5.
Hai Hua Tang 《Surface science》2007,601(16):3293-3302
The interaction of ethyl vinyl ketone (EVK) with Si(1 1 1)-7 × 7 has been investigated using high-resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. The disappearance of both stretching vibrations of CH2 (3099 cm−1) and CO (1684 cm−1) coupled with the appearance of new CC stretching mode (1660 cm−1) in the HREELS spectra of chemisorbed EVK clearly demonstrates the direct involvement of conjugated CC and CO bonds to form a SiC1H2C2HC3(C4H2C5H3)OSi surface species via [4 + 2]-like cycloaddition in a highly selective manner. In addition, XPS studies show that the C1s binding energies of C1/C2 and C3 upon chemisorption display chemical downshifts of 0.8 eV and 2.2 eV, respectively, further confirming the proposed [4 + 2]-like cycloaddition reaction for the EVK/Si(1 1 1)-7 × 7 system. DFT theoretical calculations suggest that the proposed [4 + 2]-like cycloadduct is thermodynamically most favorable.  相似文献   

6.
This paper deals with the experimental investigation of the structure and magnetic properties of thin polycrystalline Fe films. Two sets of 50 ± 2 nm thick Fe films were fabricated on Si〈1 0 0〉 substrates with native oxides in place by varying (i) the sputter pressure pAr and (ii) the Fe sputter power PFe. X-ray diffraction (XRD) study revealed that all films grew with strong 〈1 1 0〉 texture normal to the film plane. No higher order peaks were observed in any of the films studied. For both film sets, the lattice constant (a) was less than the bulk Fe lattice constant (a0 = 2.866 Å), which suggested the existence of compressive strain in all films. Two regions of homogeneous strain were observed over the range of pAr studied. Magneto-optical Kerr effect (MOKE) measurements showed that all films exhibited magnetically isotropic behaviour. The magnetic properties were observed to be influenced strongly by pAr. The film grown at pAr = 4 μbar was the most softest (Hs = 100 ± 8 kA m−1, Mr/Ms = 0.87 ± 0.02) film among all the films studied. The magnetic properties were found to be independent of PFe. The effective saturation magnetostriction constant λeff determined (using the Villari method) was positive (4 ± 1 ppm) and observed to vary within the calculated error.  相似文献   

7.
Y. Sato 《Surface science》2009,603(15):2300-2304
We have characterized the phase transition between the (1 × 1) and (3 × √3)R30° - β phases on Pb/Ge(1 1 1) using low energy electron microscopy (LEEM). We show that the transition is first-order and that, in the coexistence region of the two phases, the dominant mechanism for phase separation changes critically with Pb coverage, from nucleation and growth at 1.33 ML (saturation coverage of the β phase) to spontaneous domain switching due to thermal fluctuations of the local Pb density for slightly smaller coverage. As the Pb coverage decreases, the concentration of vacancies in the β phase increases, making additional possible Pb adsorption sites available. The larger resulting local density fluctuation of Pb becomes comparable to the density difference of the two phases, manifesting itself in the observed domain switching.  相似文献   

8.
The adsorption and thermal chemistry of γ-butyrolactone (GBL) on the (1 1 1) surface of Pd and Pt has been investigated using a combination of high resolution electron energy loss spectroscopy (HREELS) and temperature programmed desorption (TPD). HREELS results indicate that GBL adsorbs at 160 K on both surfaces through its oxygenate functionality. On Pd(1 1 1), adsorbed GBL undergoes ring-opening and decarbonylation by 273 K to produce adsorbed CO and surface hydrocarbon species. On Pt(1 1 1), very little dissociation is observed using HREELS, with almost all of the GBL simply desorbing. TPD results are consistent with decarbonylation and subsequent dehydrogenation reactions on Pd(1 1 1), although small amounts of CO2 are also detected. TPD results from Pt(1 1 1) indicate that a small proportion of adsorbed GBL (perhaps on defect sites) does undergo ring-opening to produce CO, CO2, and H2. These results suggest that the primary dissociation pathway for GBL on Pd(1 1 1) is through O-C scission at the carbonyl position. Through comparisons with previously published studies of cyclic oxygenates, these results also demonstrate how ring strain and functionality affect the ring-opening rate and mechanism.  相似文献   

9.
The growth processes and structures of Fe/Si(1 1 1) ultrathin films grown by solid-phase reactive epitaxy were investigated by coaxial impact-collision ion scattering spectroscopy (CAICISS). It has been revealed that the Fe(1 1 1) thin films with a bcc-type structure were epitaxially grown on a Si(1 1 1) crystal, even at room temperature, and formed a single-domain structure: Fe(1 1 1)∥Si(1 1 1). After annealing at above 600 °C, the Fe(1 1 1) films were transformed into β-FeSi2 via the collapse of the bcc-type structure to an amorphous or polycrystalline structure. On the basis of the thickness dependences of the growth processes, this phenomenon was discussed in terms of the diffusion of Si into Fe thin films.  相似文献   

10.
We prepared α- and β surface phases of GaAs(0 0 1)-c(4 × 4) reconstruction by molecular beam epitaxy (MBE) using As4 and As2 molecular beams, respectively, and examined them by angle-resolved ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS) with synchrotron radiation as an excitation source. The UPS valence band spectra and the XPS 3d core level data show pronounced differences corresponding to the surface composition and the atomic structure of the two phases, as proposed in the literature. In UPS, the β phase is characterized by an intensive surface state 0.5 eV below the top of the valence band at low photon energy, while an analogous peak in the α phase spectra is missing. The surface state is interpreted in terms of dangling bonds on As dimers. The As3d and Ga3d core level photoelectron lines exhibit phase-specific shapes as well as differences in the number, position and intensity of their deconvoluted components. The location of various atoms in the surface and subsurface layers is discussed; our photoemission results support models of the β phase and the α phase with As-As dimers and Ga-As heterodimers, respectively.  相似文献   

11.
By using the first principle method based on density functional theory (DFT), a study on the electronic structure and the ferromagnetic stability in C-doped (1 1 2¯ 0) ZnO thin films was conducted. It was found that the thin films have a FM ground state for a majority of configurations. It was also found that C atoms in the thin films have a clear clustering tendency. The ferromagnetism (FM) can be attributed to the coupling between C energy levels. The results showed that oxygen vacancies cannot stabilize the FM coupling of C-doped ZnO thin films. However, zinc vacancies can stabilize the FM coupling of the thin films, which indicates that hole-carriers play a crucial role in the observed FM behavior. In addition, the strain effect on the FM of C-doped ZnO thin films was also analyzed.  相似文献   

12.
A 〈1 1 0〉 oriented rod of the alloy Tb0.3Dy0.7Fe1.95 was subjected to a magnetic heat treatment, cooling through its Curie temperature under 240 kA/m. Besides the improved magnetostriction under free conditions, the magnetically annealed rod still exhibited an obvious magnetostriction “jump” effect when subjected to a uniaxial compressive pre-stress. A giant magnetostriction of 2680×10−6 was achieved under 640 kA/m and 30 MPa, which became 67% larger than before magnetic annealing. The optimum magnetostrictive strain coefficient d33 was also dramatically enhanced. Magnetic force microscopy images show magnetic domain configurations that contribute to the improved magnetostrictive performance. The effect of induced additional anisotropy by magnetic annealing on the improvement of the magnetostriction is also discussed.  相似文献   

13.
The γ-Fe formation in epitaxial Cu(0 0 1)/Fe(0 0 1) bilayers with the annealing temperature increasing has been studied. Using Mössbauer spectroscopy, X-ray diffraction, and magnetic analysis, structural and chemical characterization of the interface between cooper and iron layers has been performed. After annealing at 850 °C and subsequent cooling to room temperature, paramagnetic γ-Fe(0 0 1) precipitates with an average size of 30 nm coherent to a Cu(0 0 1) matrix form. Conditions of intermixing and the γ-Fe formation at the Cu/Fe interface are explained in terms of the solid-state synthesis in thin films. Specific features of the martensitic transition γ↔α are discussed.  相似文献   

14.
Surface phase diagram of recently proposed GaAs(0 0 1)-(2 × 4)γ is systematically investigated by using our ab initio-based approach. We focus on the (4 × 7) domain consisting of c(4 × 4)-like and (2 × 4)-like regions to clarify surface dimer constituents as functions of temperature T and As (As2 and As4) pressure pAs by comparing chemical potentials of surface dimers in the vapor phase with that on the surface. The calculated results under As4 imply that Ga dimers in the c(4 × 4)-like region tend to become stable with increase of temperature and appear at the conventional growth condition such as T ∼ 800 K and pAs ∼ 10−6 Torr, while the (2 × 4)-like region favors As dimers. This is consistent with temperature dependence of change in surface dimer constituents on the c(4 × 4) and (2 × 4)β2 clarified in our previous study. Furthermore, the surface phase transition from the c(4 × 4) to (2 × 4)β2 via (2 × 4)γ is discussed on the basis of the phase diagram obtained in this study.  相似文献   

15.
《Current Applied Physics》2010,10(4):1221-1226
Good quality ammonium dihydrogen phosphate single crystals have been grown by: (i) Sankaranarayanan–Ramasamy (SR) method and (ii) SR method with slotted ampoule. The grown crystals were subjected to UV–Vis spectroscopy, high-resolution X-ray diffractometer, dielectric, piezoelectric and laser damage threshold studies. Compared to the (1 0 0) plane of the conventional method grown ADP crystal and 〈1 0 0〉 directed SR method grown ADP crystal, the crystal grown by SR method with slotted ampoule has higher growth rate, higher optical transparency, high crystalline perfection, low dielectric loss, high piezoelectric charge coefficient and high laser damage threshold due to diffusion of segregated impurities away from the growing crystal in the slotted ampoule growth.  相似文献   

16.
A scanning tunneling microscopy study has revealed that threefold-coordinated Si atoms at intrinsic sites of reconstructed (2 × 1) structure on the Si(1 1 1) surface are removed to form a surface monovacancy by an electronic mechanism under surface-specific optical transitions at 0.45 eV. This result provides direct evidence for the relaxation of excited surface electronic states as the origin of excitation-induced structural instability on semiconductor surfaces.  相似文献   

17.
Andrew B. Helms 《Surface science》2009,603(22):3262-1561
The chemical compound 2,4-pentanedione (Hacac) has been shown to etch the oxidized metal surfaces metals such as copper and nickel, but not their unoxidized surfaces. Here it is shown that on the γ-Al2O3/NiAl (1 0 0) surface (oxidized NiAl (1 0 0)) etching of aluminum occurs at 170 K and 750 K. Reflection-absorption infrared spectroscopy (RAIRS) is used to show that Hacac binds to both the clean, metallic and oxidized surfaces, but decomposition and combustion products dominate on the metallic surface and no etching occurs. The binding process that involves a deprotonation reaction of the enol species was identified by redshift in the carbonyl peaks and the appearance of an Al-H peak observed in the IR spectrum. The implication of these results is that there is both an unusual low temperature and high temperature etching of the alumina by bound acac.  相似文献   

18.
In this work, first-principles modeling techniques are used to investigate the mechanism(s) of adsorption of molecular oxygen on the GaAs(0 0 1)-(2 × 4) surface. The reaction of adsorption was modeled using ab-initio molecular dynamics at constant temperature for two thermal regimes, i.e. 300 K and 680 K, respectively. The resulting adsorbate configurations were relaxed using density functional theory and the adsorption energies were subsequently computed. Our results suggest a dominant mechanism of adsorption described by molecular dissociation, followed by oxygen insertion in the Ga-As bonds, bridging Ga-O-As chemical bonds. The electronic properties of the clean reconstructed GaAs(0 0 1) surface and the ones obtained after O2 adsorption were computed. It is found that for the most stable adsorbate configuration, where oxygen is incorporated in a Ga-O-As unit, the associated density of electronic states is free of defect levels within the GaAs band gap region.  相似文献   

19.
The azo benzothiazole polyurethane–urea (ABPUU) was synthesized from chromophore molecule 4-[(6-nitrobenzothiazole-2-yl)diazenyl]phenyl-1,3-diamine NBDPD, polyether polyol (NJ-210) and isophorone diisocyanate (IPDI). The structure, thermal property, mechanical property and physical property were characterized and investigated. The refractive index (n) and thermo-optic coefficient (dn/dT) of ABPUU was determined at different temperature and wavelength (532 nm, 650 nm and 850 nm) using attenuated total reflection (ATR) technique. Using the CCD digital imaging devices, transmission loss of ABPUU was measured. A 1 × 2 Y-branched and 2 × 2 Mach–Zehnder interferometer (MZI) switch with two rib waveguides, dual driving electrodes and two critical 3-dB couplers polymeric thermo-optic switches based on thermo-optic effect of prepared ABPUU were designed and simulation. The power consumption of the Y-branched switch is less than 0.84 mW. The Y-branched and MZI switching rising and falling times obtained are 0.8 ms and 0.2 ms, respectively.  相似文献   

20.
Sr-doped and Sr-free La1 − xSrxMn1 − yCryO3 ± δ (LSMC, x(Sr) = 0-0.2, y(Cr) = 0.4-0.6) perovskite-type oxides were synthesized and evaluated as single phase anodes for use in intermediate temperature solid oxide fuel cell applications. Their thermo-chemical and chemical stabilities were investigated in hydrogen at high temperatures and correlated with their oxygen non-stoichiometry (3 ± δ), determined by permanganate titration. The catalytic activity towards hydrogen oxidation was examined as a function of oxide sintering time, operating temperature, and the Sr and Cr contents, using a Pt mesh current collector. While all of the perovskite oxides studied here showed some irreversible performance degradation with time under both open circuit and anodically polarized conditions, La0.9Sr0.1Mn0.6Cr0.4O3.03 (LSMC9164), sintered at 1200 °C for 10 h, was found to be the most catalytically active and also the most stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号