首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present a single mode circular photonic crystal fiber (C-PCF) for broadband dispersion compensation covering 1400 to 1610 nm wavelength band over the telecommunication windows. Investigations of guiding properties are carried out using finite element method (FEM) with circular perfectly matched layer boundary condition. Numerical study reveals that a negative dispersion coefficient of about −386.57 to −971.44 ps/(nm km) is possible to obtain over the wavelength ranging from 1400 to 1610 nm with a relative dispersion slope (RDS) of about 0.0036 nm−1 at 1550 nm wavelength. In addition, the single mode behaviour of C-PCF is demonstrated by employing V parameter. According to simulation, it is found that the proposed C-PCF acts as a single mode fiber within 1340 to 1640 nm wavelength. Moreover, effective dispersion, relative dispersion slope, birefringence and confinement loss are also presented and discussed.  相似文献   

2.
In this paper, we propose and numerically demonstrate a highly birefringent microstructure optical fiber which shows negative dispersion coefficient of about −288 to −550 ps/(nm km) covering S to L wavelength bands and −425 ps/(nm km) at the excitation wavelength 1550 nm. This proposed design successfully compensate the dispersion covering S to L communication bands ranging from 1460 to 1625 nm along with relative dispersion slope (RDS) perfectly matched to that of single mode fiber of about 0.0036 nm−1. Apart from dispersion compensation, the designed MOF offers high birefringence of 2.94 × 10−2 at 1550 nm and better compensation ratio with design simplicity due to circular air-holes in the fiber cladding.  相似文献   

3.
Lin Zhao  Zhonghua Su  Yong Hao 《Optik》2013,124(24):6574-6576
Aiming at the requirement of high birefringence, a new kind of photonic crystal fiber (PCF) with octagonal and squarely lattice is proposed. In this structure, squarely lattices are added in the inner layer to obtain high birefringence. Birefringence and dispersion as a function of wavelength and size of PCF are analyzed by using Finite Element Method (FEM). Simulation results show that this kind of PCF exhibits high birefringence with a magnitude of 10?3, and one zero dispersion point is obtained simultaneously. In addition, the characteristics of PCF can be tuned by changing the size of fiber.  相似文献   

4.
In this paper, we present and propose a novel structure for improved birefringence and single-mode propagation condition photonic crystal fiber (PCF) in a broad range of wavelength. The birefringence of the fundamental mode and single mode property in such a PCF is numerically estimated by employing full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). The simulation results illustrate that we can achieve a high birefringence and perfect single-mode condition by employing silica-filled into one-line elliptical air holes parallel to x-axis and rotated by an angle. Obviously, the proposed PCF is quite useful for optical devices.  相似文献   

5.
A novel photonic crystal fiber (PCF) based on a four-hole unit is proposed in order to meet the requirements of high birefringence, negative dispersion and confinement loss in fiber-optic communication. The proposed design has been simulated based on the full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). Analysis results show that the proposed PCF can achieve a high birefringence to the order of 10−2 at the wavelength of 1.55 μm, a large negative dispersion over a wide wavelength range and confinement losses lower than 10−9 dB/m simultaneously, which has important applications in polarization-maintaining (PM) fibers, single-polarization single-mode (SPSM) fibers, dispersion compensation fibers and so on.  相似文献   

6.
In this paper, we propose a novel photonic crystal fiber design to achieve high birefringence, high nonlinearity with a flattened dispersion profile. The air holes which are embedded in silica are arranged in triangular lattice configuration. In the core region, an air hole is introduced as the central defect to flatten the dispersion curve. The shape of the defect air hole is deliberately designed elliptical so that high birefringence in the PCF is obtained for polarization-maintaining purpose. The structural parameters are carefully selected to optimize the optical properties.  相似文献   

7.
In this paper, we investigate the dispersion and polarization properties of photonic crystal fiber with one ring or more rings of elliptical air-holes using plane-wave expansion (PWE) method. By introducing three rings of elliptical air-holes, PCF with ultra-low and ultra-flattened dispersion is designed and a total dispersion curve between ±0.5 ps/nm/km from 1315 to 1855 nm wavelength range is demonstrated. Furthermore, the polarization property of these elliptical air-hole-containing PCFs is analyzed and the variation of the birefringence with the area and ellipticity of the elliptical air-holes are discussed.  相似文献   

8.
In order to simply design a highly birefringent photonic crystal fiber (HB-PCF), we numerically simulated the correlation between the birefringence and the structural parameter of photonic crystal fiber with square-lattice or triangle-lattice air-holes by using multipole method. It is shown that the phase birefringence B(λ) and the group birefringence G(λ) can be modulated by the structure parameter of normalized wavelength λ/Λ and the relative air-hole size d/Λ. Numerical results show very high phase and group birefringence of the order of 10−2. The group birefringence becomes negative in the region where phase birefringence increases with an increase in normalized wavelength that does not appear in traditional highly birefringent fibers.  相似文献   

9.
An extruded elliptical hole photonic crystal fibers PCF with square air-core is proposed. By using a full vector finite-element method FV-FEM and anisotropic perfectly matched layers APML, the structure and optical properties of the proposed PCF are analyzed. Simulation results show that the birefringence of the proposed photonic crystal fiber can be up to the order of 10−2, and has a flattened dispersion from 1.20 μm to 1.80 μm. The proposed PCF may have important application in super-continuum SC generation, dispersion compensation, fiber-optic sensing systems and other aspects.  相似文献   

10.
提出了一种新型的宽带色散补偿光子晶体光纤。通过增大光子晶体光纤(PCF)包层第一环空气孔半径r1,同时优化孔间距和包层其它环空气孔,在1550nm波长处获得了低至-1906.4ps/nm/km的负色散值。针对常规单模光纤的色散特性,设计出了宽带色散补偿光子晶体光纤,可补偿23倍长度的常规光纤,补偿的带宽达330nm,这在WDM系统中对多个信道同时进行色散补偿具有非常重要的意义。  相似文献   

11.
A highly birefringent dispersion compensating hybrid photonic crystal fiber is presented. This fiber successfully compensates the chromatic dispersion of standard single mode fiber over E- to L-communication bands. Simulation results reveal that it is possible to obtain a large negative dispersion coefficient of about −1054.4 ps/(nm km) and a relative dispersion slope of 0.0036 nm−1 at the 1550 nm wavelength. The proposed fiber simultaneously provides a high birefringence of order 3.45 × 10−2 at the 1550 nm. Moreover, it is confirmed that the designed fiber successfully operates as a single mode in the entire band of interest. For practical conditions, the sensitivity of the fibers dispersion properties to a ±2% variation around the optimum values is carefully studied and the nonlinearity of the proposed fiber is also reported and discussed. Such fibers are essential for high speed transmission system as a dispersion compensator, sensing applications, fiber loop mirrors as well as maintaining single polarization, and many nonlinear applications such as four-wave mixing, etc.  相似文献   

12.
In this paper, polarization properties and propagation characteristics of rectangular lattice photonic crystal fibers with elliptical air-holes are investigated by using the full-vector finite element method with anisotropic perfectly matched layers. Numerical results show that the birefringence of the fiber is induced by asymmetries of the cladding. Moreover, by adjusting its structure parameters, such as the hole pitch Λ, and the air-hole elliptical rate η, we find the optimized design parameters of the fiber with high birefringence (the order of 10−2) and limited polarization mode dispersion, operating in a single mode region at an appropriate wavelength range.  相似文献   

13.
This paper presents a dispersion compensating microstructure holey fiber for wideband transmission system. The finite element method with perfectly matched absorbing layers boundary condition is used to investigate the guiding properties. According to simulation, negative dispersion coefficient of −1455 ps/(nm km) and a relative dispersion slope (RDS) close to that of single mode fiber of about 0.0036 nm−1 is obtained at 1.55 μm. The variation of structural parameters is also studied to evaluate the tolerance of the fabrication. The proposed module can be used in 40 Gb/s dense wavelength division multiplexing (DWDM) systems in optical fiber communication networks.  相似文献   

14.
A large mode area multicore photonic crystal fiber with a flattened fundamental mode is proposed in this paper. Another two kinds of single core fibers are also presented as comparison. The modal characteristics such as effective mode area and confinement loss are investigated using the finite element method. Numerical results show that a combination of flattened fundamental mode, large mode area and ultralow loss is obtained in the multicore fiber by introducing higher refractive index in the core region.  相似文献   

15.
A design of octagonal photonic crystal fiber (OPCF) with F-doped elliptical hole core is proposed. The proposed design is simulated through an full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). Numerical results show that the designed OPCF has the ultra-flattened dispersion of 0 ± 0.4 ps/(nm km) from 1.34 μm to 1.72 μm (380 nm band) which covers S, C and L communication bands, a low confinement loss of less than 10−7 dB/m in the same wavelength range, and the corresponding birefringence and nonlinear coefficient are about 2.12 × 10−2 and 50.67 W−1 km−1 at 1.55 μm, respectively. The proposed OPCF may have great potential applications in super-continuum (SC) generation, dispersion compensation, polarization maintaining and so on.  相似文献   

16.
We propose a compact polarization splitter based on dual-elliptical-core photonic crystal fiber. Two elliptical cores are introduced to increase the difference of effective index between x-polarized and y-polarized mode and three elliptical modulation air holes are used to control the power transfer between the two cores. By optimizing the structure parameters, the length of the polarization splitter is distinctly shortened. Numerical results demonstrate that the compact splitter has the length of 775 μm and up to 50 dB extinction ratio at the central wavelength of 1.55 μm. The corresponding bandwidth of 32 nm could be achieved from the wavelength of 1.534–1.566 μm with the extinction ratio over 20 dB  相似文献   

17.
M. Basu  S. Roy 《Optik》2006,117(8):377-387
Dispersion compensating fibers (DCFs) are being widely used as dispersion compensation techniques because of its superior characteristics. This work reports the theoretical modelling of a single mode DCF having W-shaped shallow as well as deeply depressed clad profile. The DCFs have been designed and optimized by suitable adjusting different fiber parameters such as, central relative index difference (Δ+), inner core radius (a), depression depth parameter (ρ), normalized end position of the depressed clad (p), etc. at a given spot size . The figure of merit (FOM) characteristics including the bend loss as well as other losses associated with fiber manufacturing technique have been thoroughly investigated. Performances of these DCFs for recent wavelength division multiplexing (WDM) transmission system have also been discussed. By adjusting different fiber parameters, the effective core area (Aeff) of the above DCFs can be controlled to minimize the effect of non-linearities on them.  相似文献   

18.
Approximate empirical analysis of mode power distribution (MPD) carried by the fundamental mode is newly investigated based on a broadband dispersion compensating microstructured fiber (MF). The fraction of modal power in the core region, η, is defined with the help of extending the applicability of well-established classical optical fiber theories to MFs. In doing so, the influences of structural parameters and wavelength on MPD characteristics of the fundamental mode are systematically analyzed in detail based on simple physically consistent concepts of conventional fibers. As a result, it is shown that for the optimum MF design in Ref. [11] as a multimode fiber, when the number of guiding modes increases, the mode power ratio of the fundamental mode constantly increases from 69.4%; in addition, we find that as wavelength increases within 1.2-1.6 μm, mode power confinement ability of the fundamental mode is lessened for single-mode propagation, whereas for multimode propagation it becomes enhanced.  相似文献   

19.
We present a novel broadband dispersion compensating photonic crystal fiber with defected core in this paper. The small central defect of air hole can flexibly control the chromatic dispersion properties of this kind of photonic crystal fiber. This kind of fiber has broadband large negative chromatic dispersion, and the chromatic dispersion coefficient varies from -440 to -480 ps/(nm.km) in the measured wavelength range of 1500 - 1625 nm. The calculated chromatic dispersion curve is well matched to the measured chromatic dispersion coefficient in the range of 1500 - 1625 nm. The proposed photonic crystal fiber can be used to design the dispersion compensating fiber in the desired wavelength range by adjusting its structural parameters.  相似文献   

20.
We have theoretically investigated the birefringence and loss properties of the selectively liquid-filled photonic crystal fibers with the liquid asymmetrically infiltrated into one-line air holes along x-axis. A high birefringence value B = 1.74 × 10−3 can be achieved at λ = 1.55 μm. By varying the index of the infiltrating liquid, the birefringence values are shown to be well tuned. In addition, the confinement losses can be efficiently reduced by diminishing the number of liquid holes, which is quite useful for optical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号