共查询到20条相似文献,搜索用时 15 毫秒
1.
Influences of spin–orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots 下载免费PDF全文
M Bagheri Harouni 《中国物理 B》2021,30(9):90301-090301
Quantum speed limit and entanglement of a two-spin Heisenberg XYZ system in an inhomogeneous external magnetic field are investigated. The physical system studied is the excess electron spin in two adjacent quantum dots. The influences of magnetic field inhomogeneity as well as spin–orbit coupling are studied. Moreover, the spin interaction with surrounding magnetic environment is investigated as a non-Markovian process. The spin–orbit interaction provides two important features: the formation of entanglement when two qubits are initially in a separated state and the degradation and rebirth of the entanglement. 相似文献
2.
Magnetization of anisotropic quantum dots in the presence of the Rashba spin–orbit interaction has been studied for three and four interacting electrons in the dot for non-zero values of the applied magnetic field. We observe unique behaviors of magnetization that are direct reflections of the anisotropy and the spin–orbit interaction parameters independently or concurrently. In particular, there are saw-tooth structures in the magnetic field dependence of the magnetization, as caused by the electron–electron interaction, that are strongly modified in the presence of large anisotropy and high strength of the spin–orbit interactions. We also report the temperature dependence of magnetization that indicates the temperature beyond which these structures due to the interactions disappear. Additionally, we found the emergence of a weak sawtooth structure in magnetization for three electrons in the high anisotropy and large spin–orbit interaction limit that was explained as a result of merging of two low-energy curves when the level spacings evolve with increasing values of the anisotropy and the spin–orbit interaction strength. 相似文献
3.
In the present paper, we have studied the effects of temperature and pressure simultaneously on the third harmonic generation (THG) of a GaAs wedge-shaped quantum dot under the influence of spin–orbit interaction (SOI). For this purpose, we have used analytical expression for THG obtained by the compact-density matrix formalism. THG has been calculated for different temperatures and pressures under SOI. According to the obtained results, it is found that (i) THG shows a red shift of peak position in the presence of SOI. (ii) THG shifts toward higher energies with increasing temperature and considering the SOI. (iii) THG moves to lower energies with increasing pressure and considering the SOI. 相似文献
4.
We study in this article the effects of external magnetic field on the electron Zitterbewegung in semiconductor quantum dots and wires with parabolic confinements and Rashba spin–orbit interaction. In doing so, we have calculated the dynamics of the expectation value of the position operator by means of the time evolution operator in an appropriate Hilbert space. The results show that the electron Zitterbewegung, its amplitude which is related to the electron confinement, and the period of the electron Zitterbewegung depend on the external magnetic field. We propose that the magnetic field can be used as an external agent to control the electron Zitterbewegung, a fundamental key for experimental detection of this phenomena. 相似文献
5.
We investigate the electron spin–orbit interaction anisotropy of pyramidal InAs quantum dots using a fully three-dimensional Hamiltonian. The dependence of the spin–orbit interaction strength on the orientation of externally applied in-plane magnetic fields is consistent with recent experiments, and it can be explained from the interplay between Rashba and Dresselhaus spin–orbit terms in dots with asymmetric confinement. Based on this, we propose manipulating the dot composition and height as efficient means for controlling the spin–orbit anisotropy. 相似文献
6.
We have studied spin-dependent electron tunneling through the Rashba barrier in a monolayer graphene lattices. The transfer matrix method, have been employed to obtain the spin dependent transport properties of the chiral particles. It is shown that graphene sheets in the presence of Rashba spin–orbit barrier will act as an electron spin-inverter. 相似文献
7.
In this paper, we theoretically study the effect of the in-plane magnetic field on spin polarization in the presence of the Dresselhaus spin–orbit effect. It is shown that the large spin polarization can be achieved in such a nanostructure due to the effects of both the Dresselhaus spin–orbit term and the in-plane magnetic field, but the latter plays a main role in the tunneling process. It is also shown that with the increase of in-plane magnetic field, the degree of spin splitting obviously becomes larger. 相似文献
8.
We provide an alternative means of electric field control for spin manipulation in the absence of magnetic fields by transporting quantum dots adiabatically in the plane of two-dimensional electron gas. We show that the spin splitting energy of moving quantum dots is possible due to the presence of quasi-Hamiltonian that might be implemented to make the next generation spintronic devices of post CMOS technology. Such spin splitting energy is highly dependent on the material properties of semiconductor. It turns out that this energy is in the range of meV and can be further enhanced with increasing pulse frequency. In particular, we show that quantum oscillations in phonon mediated spin-flip behaviors can be observed. We also confirm that no oscillations in spin-flip behaviors can be observed for the pure Rashba or pure Dresselhaus cases. 相似文献
9.
Photoinduced spin current is calculated in a system consisting of a 1D quantum ring with conductors connected to it. It is shown that in the presence of Rashba’s spin–orbit interaction, a current is induced in the ring by circularly polarized radiation. Expressions are derived for the current and electron transmission coefficients taking into account the inelastic interaction with the radiation. It is shown that the spin current is a complex function of the magnetic flux through the ring, radiation frequency, and the spin–orbit coupling constant. In the presence of a potential difference, the interaction with radiation may considerably increase the efficiency of the quantum-ring-based spin filter. 相似文献
10.
Influence of electrons interaction with longitudinal acoustic phonons on magnetoelectric and spin-related transport effects are investigated. The considered system is a two-dimensional electron gas system with both Rashba and Dresselhaus spin–orbit couplings. The works which have previously been performed in this field, have revealed that the Rashba and Dresselhaus couplings cannot be responsible for spin current in the non-equilibrium regime. In the current Letter, a semiclassical method was employed using the Boltzmann approach and it was shown that the spin current of the system, in general, does not go all the way to zero when the electron–phonon coupling is taken into account. It was also shown that spin accumulation of the system could be influenced by electron–phonon coupling. 相似文献
11.
G.A. Intronati P.I. Tamborenea D. Weinmann R.A. Jalabert 《Physica B: Condensed Matter》2012,407(16):3252-3255
We study numerically the effects of an extrinsic spin–orbit interaction on the model of electrons in n-doped semiconductors of Matsubara and Toyozawa (MT). We focus on the analysis of the density of states (DOS) and the inverse participation ratio (IPR) of the spin–orbit perturbed states in the MT set of energy eigenstates in order to characterize the eigenstates with respect to their extended or localized nature. The finite sizes that we are able to consider necessitate an enhancement of the spin–orbit coupling strength in order to obtain a meaningful perturbation. The IPR and DOS are then studied as a function of the enhancement parameter. 相似文献
12.
Within the frame of the Pavlov–Firsov spin–phonon coupling model, we study the spin-flip assisted by the acoustical phonon scattering between the first-excited state and the ground state in quantum dots. We analyze the behaviors of the spin relaxation rates as a function of an external magnetic field and lateral radius of quantum dot. The different trends of the relaxation rates depending on the magnetic field and lateral radius are obtained, which may serve as a channel to distinguish the relaxation processes and thus control the spin state effectively. 相似文献
13.
Spin texturing in quantum wires with Rashba and Dresselhaus spin–orbit interactions and in-plane magnetic field 下载免费PDF全文
In this work, we investigate the effects of interplay of spin–orbit interaction and in-plane magnetic fields on the electronic structure and spin texturing of parabolically confined quantum wire. Numerical results reveal that the competing effects between Rashba and Dresselhaus spin–orbit interactions and the external magnetic field lead to a complicated energy spectrum. We find that the spin texturing owing to the coupling between subbands can be modified by the strength of spin–orbit couplings as well as the magnitude and the orientation angle of the external magnetic field. 相似文献
14.
Hassan Hassanabadi Hamed Rahimov Liangliang Lu Chao Wang 《Journal of luminescence》2012,132(5):1095-1100
In this study, a detailed investigation of the nonlinear optical properties such as optical absorption and refractive index change associated with intersubband transitions in a three-electron quantum dot in two dimensions in the presence of the Rashba spin–orbit interaction has been carried out. We present the exact wave functions and energy levels of the system. Numerical results on typical GaAs/AlGaAs materials show that the decrease of the quantum dot radius blueshifts and amplifies the absorption coefficients as well as the refractive index changes, as expected. Additionally, an increase of the optical intensity and relaxation time considerably changes the absorption coefficients and the refractive index changes. 相似文献
15.
Using standard quantum network method, we analytically investigate the effect of Rashba spin–orbit coupling (RSOC) and a magnetic field on the spin transport properties of a polygonal quantum ring. Using Landauer–Büttiker formula, we have found that the polarization direction and phase of transmitted electrons can be controlled by both the magnetic field and RSOC. A device to generate a spin-polarized conductance in a polygon with an arbitrary number of sides is discussed. This device would permit precise control of spin and selectively provide spin filtering for either spin up or spin down simply by interchanging the source and drain. 相似文献
16.
Surya Chattopadhyaya 《Molecular physics》2013,111(20):3026-3039
Electronic spectrum of astrophysically important molecule magnesium hydride (MgH) has been studied using configuration interaction methodology excluding and including spin–orbit coupling. Potential energy curves of several spin-independent (Λ?S) electronic states have been constructed and spectroscopic constants of low-lying bound Λ?S states within 8.2 eV of term energy are reported in the first stage of calculations. The X2Σ+ is identified as the ground state in the Λ?S level. In the subsequent stage, the spin–orbit interaction has been incorporated and its effects on the potential energy curves and spectroscopic features of different electronic states of the species have been investigated. The X2Σ+1/2 is identified as the spin–orbit (Ω) ground state of the species. Transition moments of several dipole-allowed transitions are computed in both the stages and radiative lifetimes of the corresponding excited states are computed. Electric dipole moments (µ) for a number of low-lying bound Λ?S states as well as several low-lying Ω-states are also calculated in the present study. 相似文献
17.
In this paper, we have studied the effects of temperature, strain and magnetic field on non-extensive entropy of a two-dimensional (2D) quantum dot under spin–orbit interaction. To this end, we have obtained the energy levels and wave functions of the system in the presence of Bychkov–Rashba, Dresselhaus and strain effects by using diagonalization procedure. Then, we have used the Tsallis formalism and calculated the entropy of the system. It is found that the entropy is increased with enhancing the temperature with and without strain. The entropy increases with considering the negative strain. The strain has not strongly effect on the entropy at low temperatures. 相似文献
18.
In this paper we investigate the influence of spin–orbit interaction and two types of Rashba interaction (intrinsic and extrinsic) on magnetic and thermoelectric properties of graphene-like zigzag nanoribbons based on the honeycomb lattice. We utilize the Kane-Mele model with additional Rashba interaction terms. Magnetic structure is described by the electron-electron Coulomb repulsion reduced to the on-site interaction (Hubbard term) in the mean field approximation. We consider four types of magnetic configurations: ferromagnetic and antiferromagnetic with in-plane and out-of plane direction of magnetization. Firstly, we analyze the influence of extrinsic Rashba coupling on systems with negligible spin–orbit interaction, e.g. graphene of an appropriate substrate. Secondly, we discuss the interplay between spin–orbit and intrinsic Rashba interactions. This part is relevant to materials with significant spin–orbit coupling such as silicene and stanene. 相似文献
19.
Leonor Chico Hernán Santos M. Carmen Muñoz M. Pilar López-Sancho 《Solid State Communications》2012,152(15):1477-1482
We present a theoretical study of spin–orbit interaction effects on single wall carbon nanotubes and curved graphene nanoribbons by means of a realistic multiorbital tight-binding model, which takes into account the full symmetry of the honeycomb lattice. Several effects relevant to spin–orbit interaction, namely, the importance of chirality, curvature, and a family-dependent anisotropic conduction and valence band splitting are identified. We show that chiral nanotubes and nanoribbons exhibit spin-split states. Curvature-induced orbital hybridization is crucial to understand the experimentally observed anisotropic spin–orbit splittings in carbon nanotubes. In fact, spin–orbit interaction is important in curved graphene nanoribbons, since the induced spin-splitting on the edge states gives rise to spin-filtered states. 相似文献
20.
Thermoelectric transport and spin density of graphene nanoribbons with Rashba spin–orbit interaction
In the present paper, we have theoretically investigated thermoelectric transport properties of armchair and zigzag graphene nanoribbons with Rashba spin–orbit interaction, as well as dephasing scattering processes by applying the nonequilibrium Green function method. Behaviors of electronic and thermal currents, as well as thermoelectric coefficients are studied. It is found that both electronic and thermal currents decrease, and thermoelectric properties been suppressed, with increasing strength of Rashba spin–orbit interaction. We have also studied spin split and spin density induced by Rashba spin–orbit interaction in the graphene nanoribbons. 相似文献