首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports a detailed numerical study of soliton switching in a high as well as low birefringent nonlinear coupler. It is shown that by controlling the polarization angle one can have nearly 100% transmission with excellent switching characteristics. It is shown that soliton remains stable during its propagation inside the coupler. However it is observed that high birefringent coupler exhibits relatively better soliton stability. We show that the coupler could be used as a soliton switch even at an input peak power less than the critical power, the power at which 50-50 power sharing takes place between the two cores, just by a judicious choice of the polarization angle.  相似文献   

2.
Dark soliton switching in a nonlinear directional coupler in the presence of intermodal dispersion, cross-phase modulation (CPM), third-order dispersion, Raman effect, and self-steepening effect is reported for the first time. It is shown that, with the exception of CPM, all of the other perturbative effects have almost no effect on the switching characteristics of the dark soliton switch, which is an improvement over the corresponding bright soliton switch. Although the CPM increases the critical power of dark soliton switching, the soliton pulse remains stable inside the coupler during its propagation.  相似文献   

3.
S. Thongmee 《Optik》2010,121(3):281-285
We propose a new design of the secure packet switching device using the nonlinear behaviors of soliton in a micro ring resonator, where the nonlinear penalty of light traveling in the device becomes beneficial. The chaotic signals are generated by a Kerr effects nonlinear type of the input soliton pulse in a micro ring resonator, where the control input power can be used to specify the output filtering signals. Some device parameters are chosen and simulated using the proposed model. The potential of using such a device for communication security is performed and discussed. For instance, the packet switching of the chaotic encoding data increases from the chaotic signal encoding of 100 bits−1. Results obtained have shown the potential of using such a proposed device for the tunable bandpass and band-stop filters, in which packet switching data can be performed and secured.  相似文献   

4.
A numerical study of femtosecond pulse propagation and switching in a dual-core nonlinear directional coupler with the consideration of third order dispersion and self-steepening effects is reported. The Split Step Fourier Method (SSFM) is used to investigate the switching characteristics of nonlinear directional couplers. It is observed that the energy transfer from core to core is not affected by changing the input pulse shapes except super-Gaussian. While the normalized coupling co-efficient and the input peak power dominate the coupling characteristics, the effects of third order dispersion (TOD) and self-steepening (SS) are also reported.  相似文献   

5.
Amarendra K. Sarma 《Optik》2009,120(8):390-217
A numerical study of soliton switching in a two- and three-core coupler is carried out taking into account the effect of intermodal dispersion and third-order dispersion. A two and three-core coupler with linear and triangular configuration is considered. It is found that the three-core coupler with linear configuration shows the best switching characteristics.  相似文献   

6.
Exp-function method is used to find a unified solution of nonlinear wave equation. Nonlinear Schrödinger equations with cubic and power law nonlinearity are selected to illustrate the effectiveness and simplicity of the method. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving nonlinear equation.  相似文献   

7.
We use the variational approach (VA) and the split-step Fourier transforms (SSFT) to study the transmission and switching characteristics inside the fiber nonlinear directional coupler (NDLC). The results, based on the VA, indicate that the second-order coupling coefficient dispersion and initiative chirp all reduce the coupling length, and the second-order coupling coefficient dispersion makes the switching characteristics become sharper and threshold power become bigger under the case of not having initiative chirp. The outcomes, based on the SSFT, indicate that the first order intermodal dispersion coefficient make optical pulses splitting in the propagation of fundamental solitons, and the second-order coupling coefficient dispersion reduces the coupling length, sharpens the switching characteristics and increases the switching threshold power, the results agrees well with those from the VA.  相似文献   

8.
We have investigated the switching performance of a gained (nonlinear directional coupler) NLDC switch in the presence of both 2nd and 4th order gain nonlinearities. In this system, we have achieved a nearly complete pulse switching at half beat length of the coupler which implies about 40% reduction in the switching length as compared to the switching length reported in Trillo et al. (1988). We have shown that at the half beat length the output energy of each branch is equal to that of the input energy and hence the gained NLDC switches have ability to be cascaded. Our initial investigations reveal that this gained NLDC switch has remarkable performance and potential to be used in ultra-fast optical communication systems.  相似文献   

9.
This paper presents the coupled version of a previous work on nonlinear Schrödinger equation [23]. It focuses on the construction of approximate solutions of nonlinear Schrödinger equations. In this paper, we applied the differential transformation method (DTM) to solving coupled Schrödinger equations. The obtained results show that the technique suggested here is accurate and easy to apply.  相似文献   

10.
We present new singular solutions of the nonlinear Schrödinger equation (NLS)
  相似文献   

11.
12.
13.
Linear stability of solitary waves near transcritical bifurcations is analyzed for the generalized nonlinear Schrödinger equations with arbitrary forms of nonlinearity and external potentials in arbitrary spatial dimensions. Bifurcation of linear-stability eigenvalues associated with this transcritical bifurcation is analytically calculated. Based on this eigenvalue bifurcation, it is shown that both solution branches undergo stability switching at the transcritical bifurcation point. In addition, the two solution branches have opposite linear stability. These analytical results are compared with the numerical results, and good agreement is obtained.  相似文献   

14.
A. Bahrami  A. Rostami  F. Nazari 《Optik》2011,122(20):1787-1790
We propose an all-optical switch (AOS) based on Mach-Zehnder (MZ) and Multi-mode interference (MMI) using nonlinear closely coupled waveguides. The device operates by switching between two states of coupled waveguides. In first state the refractive index of waveguides are same and light field will completely couple to nonlinear waveguide in half length of coupler and will back in the second half. We will have π phase difference in this procedure and the input field will appear in Bar-state output. In the second state the refractive index of nonlinear waveguide increase with high intensity control field. In this case, we have lower coupling and change in phase. But, we choose the best refractive index change to obtain the phase change of multiple of 2π necessary for Cross-state in output. The beam propagation method is used to simulate the device operation.  相似文献   

15.
Ajit Kumar 《Pramana》2001,57(5-6):969-979
Switching between the bistable soliton states in a doubly and inhomogeneously doped fiber system is studied numerically. Both the cases of lossless as well as lossy couplers are considered. It is shown that both up-switching (from the low state to the high state) and down-switching (from the high state to the low state) of solitons between bistable states are realizable, if the amplification of the input soliton for up-switching and the extraction of energy from it for down-switching are suitably adjusted.  相似文献   

16.
We apply the equivalence particle principle to several nonlinear Schrödinger equations (NLSEs) that model the propagation of a spatial beam with logarithmic law nonlinearity. Using this principle, expressions for acceleration, spatial frequency, spatial period and other variables for a spatial soliton can be derived from the solution of the homogenous NLSE with logarithmic law nonlinearity. These results agree well with numerical simulations of the perturbed NLSE. We show that if the expression of the acceleration is bounded this means the spatial soliton propagates with a swing effect.  相似文献   

17.
18.
We consider a wide class of integrable nonautonomous nonlinear integro-differential Schrödinger equation which contains the models for the soliton management in Bose–Einstein condensates, nonlinear optics, and inhomogeneous Heisenberg spin chain. With the help of the nonisospectral AKNS hierarchy, we obtain the N-fold Darboux transformation and the N-fold soliton-like solutions for the equation. The soliton management, especially the synchronized dispersive and nonlinear management in optical fibers is discussed. It is found that in the situation without external potential, the synchronized dispersive and nonlinear management can keep the integrability of the nonlinear Schrödinger equation; this suggests that in optical fibers, the synchronized dispersive and nonlinear management can control and maintain the propagation of a multi-soliton.  相似文献   

19.
We respectively investigate breakup and switching of the Manakov-typed bound vector solitons (BVSs) induced by two types of stochastic perturbations: the homogenous and nonhomogenous. Symmetry-recovering is discovered for the asymmetrical homogenous case, while soliton switching is found to relate with the perturbation amplitude and soliton coherence. Simulations show that soliton switching in the circularly-polarized light system is much weaker than that in the Manakov and linearly-polarized systems. In addition, the homogenous perturbations can enhance the soliton switching in both of the Manakov and non-integrable (linearly- and circularly-polarized) systems. Our results might be helpful in interpreting dynamics of the BVSs with stochastic noises in nonlinear optics or with stochastic quantum fluctuations in Bose–Einstein condensates.  相似文献   

20.
With regards to the nonlinear Schrödinger equation recently advanced by Nobre, Rego-Monteiro, and Tsallis (NRT), based on Tsallis qq-thermo-statistical formalism, we investigate the existence and properties of its quasi-stationary solutions, which have the time and space dependences “separated” in a qq-deformed fashion. One recovers the normal factorization into purely spatial and purely temporal factors, corresponding to the standard, linear Schrödinger equation, when the deformation vanishes (q=1)(q=1). We discuss various specific examples of exact, quasi-stationary solutions of the NRT equation. In particular, we obtain a quasi-stationary solution for the Moshinsky model, providing the first example of an exact solution of the NRT equation for a system of interacting particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号