首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel optical image encryption scheme based on fractional Mellin transform   总被引:3,自引:0,他引:3  
A novel nonlinear image encryption scheme is proposed by introducing the fractional Mellin transform (FrMT) into the field of image security. As a nonlinear transform, FrMT is employed to get rid of the potential insecurity of the optical image encryption system caused by the intrinsic object-image relationship between the plaintext and the ciphertext. Different annular domains of the original image are transformed by FrMTs of different orders, and then the outputs are further encrypted by comprehensively using fractional Fourier transform (FrFT), amplitude encoding and phase encoding. The keys of the encryption algorithm include the orders of the FrMTs, the radii of the FrMT domains, the order of the FrFT and the phases generated in the further encryption process, thus the key space is extremely large. An optoelectronic hybrid structure for the proposed scheme is also introduced. Numerical simulations demonstrate that the proposed algorithm is robust with noise immunity, sensitive to the keys, and outperforms the conventional linear encryption methods to counteract some attacks.  相似文献   

2.
A technique for image encryption using fractional Fourier transform (FRT) and radial Hilbert transform (RHT) is proposed. The spatial frequency spectrum of the image to be encrypted is first segregated into two parts/channels using RHT, and image subtraction technique. Each of these channels is encrypted independently using double random phase encoding in the FRT domain. The different fractional orders and random phase masks used during the process of encryption and decryption are the keys to enhance the security of the proposed system. The algorithms to implement the proposed encryption and decryption scheme are discussed, and results of digital simulation are presented.  相似文献   

3.
4.
A multi-order discrete fractional Mellin transform (MODFrMT) is constructed and directly used to encrypt the private images. The MODFrMT is a generalization of the fractional Mellin transform (FrMT) and is derived by transforming the image with multi-order discrete fractional Fourier transform (MODFrFT) in log-polar coordinates, where the MODFrFT is generalized from the closed-form expression of the discrete fractional Fourier transform (DFrFT) and can be calculated by fast Fourier transform (FFT) to reduce the computation burden. The fractional order vectors of the MODFrMT are sensitive enough to be the keys, and consequently key space of the encryption system is enlarged. The proposed image encryption algorithm has significant ability to resist some common attacks like known-plaintext attack, chosen-plaintext attack, etc. due to the nonlinear property of the MODFrMT. Additionally, Kaplan-Yorke map is employed in coordinate transformation process of the MODFrMT to further enhance the security of the encryption system. The computer simulation results show that the proposed encryption algorithm is feasible, secure and robust to noise attack and occlusion.  相似文献   

5.
We propose an image watermarking scheme based on the phase retrieval algorithm in gyrator domain. The watermark is converted into a noise-like image by Arnold transform. The scrambled image is regarded as the amplitude of gyrator spectrum. The Gerchberg-Saxton algorithm is employed to obtain the unknown phase function in gyrator pair, in which the host image is the amplitude of input function. The phase information and the parameters of the two transforms serve as the key of watermarking algorithm. The numerical simulation has demonstrated the performance of the proposed algorithm.  相似文献   

6.
We propose a multiple-image hiding scheme based on the amplitude- and phase-truncation approach, and phase retrieval iterative algorithm in the fractional Fourier domain. The proposed scheme offers multiple levels of security with asymmetric keys. Multiple input images multiplied with random phase masks are independently fractional Fourier transformed with different orders. The individual keys and common keys are generated by using phase and amplitude truncation of fractional spectrum. After using two fractional Fourier transform, the resultant encrypted image is hided in a host image with phase retrieval iterative algorithm. Using the correct universal keys, individual keys, and fractional orders, one can recover the original image successfully. Computer simulation results with four gray-scale images support the proposed method. To measure the validity of the scheme, we calculated the mean square error between the original and the decrypted images. In this scheme, the encryption process and generation of decryption keys are complicated and should be realized using computer. For decryption, an optoelectronic setup has been suggested.  相似文献   

7.
《Current Applied Physics》2015,15(6):739-747
The linear Hilbert phase mask or transform has found applications in image processing and spectroscopy. An optical version of the fractional Hilbert mask is considered here, comprising an imaging system with a circular, unobscured pupil in which a variable phase delay is introduced into one half of the pupil, split bilaterally.The radial Hilbert phase mask is also used in image processing and to produce optical vortices which have applications in optical tweezers and the detection of exoplanets.We subjected the fractional and radial Hilbert phase masks to Zernike function expansion in order to compute the image plane electromagnetic field distribution using Nijboer-Zernike theory. The Zernike functions form an orthogonal basis on the unit circle. The complex-valued Zernike expansion coefficients for these two phase masks were derived for use in the context of the Extended Nijboer-Zernike (ENZ) theory of image formation. The ENZ approach is of interest in that it allows a greater range of defocus to be dealt with, provides a simple means of taking a finite source size into account and has been adapted to high Numerical Aperture (NA) imaging applications.Our image plane results for the fractional Hilbert mask were verified against a numerical model implemented in the commercial optical design and analysis code, Zemax®. It was found that the Nijboer-Zernike result converged to the Zemax® result from below as the number of Zernike terms in the expansion was increased.  相似文献   

8.
In this paper, we demonstrate that an arbitrary order (including both integer and fractional orders) Hilbert transform (HT) of an input optical waveform can be implemented by a simple and practical phase-shifted fiber Bragg grating (PSFBG) operated in reflection mode. The PSFBG consists of two concatenated identical uniform FBGs with a proper phase shift between them. It is proved that both the phase shift of the FBGs and the apodizing profile of the refractive index modulation determine the order of the transform. The simulation results show that the device can perform arbitrary fractional Hilbert transform (FHT) with excellent accuracy for input signals with up to hundreds of GHz bandwidth using feasible FBG structures.  相似文献   

9.
A novel scheme for image encryption of phase images is proposed, using fractional Hartley transform followed by Arnold transform and singular value decomposition in the frequency domain. Since the plaintext is a phase image, the mask used in the spatial domain is a random amplitude mask. The proposed scheme has been validated for grayscale images and is sensitive to the encryption parameters such as the order of the Arnold transform and the fractional orders of the Hartley transform. We have also evaluated the scheme's resistance to the well-known noise and occlusion attacks.  相似文献   

10.
Color image encryption and decryption using fractional Fourier transform   总被引:1,自引:0,他引:1  
We propose the encryption of color images using fractional Fourier transform (FRT). The image to be encrypted is first segregated into three color channels: red, green, and blue. Each of these channels is encrypted independently using double random phase encoding in the FRT domain. The different fractional orders and random phase masks used during the process of encryption and decryption are the keys to enhance the security of the proposed system. The algorithms to implement the proposed encryption and decryption scheme are discussed, and results of digital simulation are presented. The technique is shown to be a powerful one for colored text encryption. We also outline the implementation of the algorithm and examine its sensitiveness to changes in the fractional order during decryption.  相似文献   

11.
Optical fringes with a quadratic phase are often encountered in optical metrology. Parameter estimation of such fringes plays an important role in interferometric measurements. A novel method is proposed for accurate and direct parameter estimation using the fractional Fourier transform (FRFT), even in the presence of noise and obstacles. We take Newton׳s rings fringe patterns and electronic speckle pattern interferometry (ESPI) interferograms as classic examples of optical fringes that have a quadratic phase and present simulation and experimental results demonstrating the performance of the proposed method.  相似文献   

12.
A novel nonlinear image encryption scheme based on a fully phase nonzero-order joint transform correlator architecture (JTC) in the Gyrator domain (GD) is proposed. In this encryption scheme, the two non-overlapping data distributions of the input plane of the JTC are fully encoded in phase and this input plane is transformed using the Gyrator transform (GT); the intensity distribution captured in the GD represents a new definition of the joint Gyrator power distribution (JGPD). The JGPD is modified by two nonlinear operations with the purpose of retrieving the encrypted image, with enhancement of the decrypted signal quality and improvement of the overall security. There are three keys used in the encryption scheme, two random phase masks and the rotation angle of the GT, which are all necessary for a proper decryption. Decryption is highly sensitivity to changes of the rotation angle of the GT as well as to little changes in other parameters or keys. The proposed encryption scheme in the GD still preserves the shift-invariance properties originated in the JTC-based encryption in the Fourier domain. The proposed encryption scheme is more resistant to brute force attacks, chosen-plaintext attacks, known-plaintext attacks, and ciphertext-only attacks, as they have been introduced in the cryptanalysis of the JTC-based encryption system. Numerical results are presented and discussed in order to verify and analyze the feasibility and validity of the novel encryption–decryption scheme.  相似文献   

13.
Weimin Jin  Caijie Yan 《Optik》2007,118(1):38-41
The optical image encryption based on multichannel fractional Fourier transform (FRT) and double random phase encoding technique is proposed. Optical principles of encoding and decoding are analyzed in detail. With this method, one can encrypt different parts of input image, respectively. The system security can be improved to some extent, not only because fractional orders and random phase masks in every channel can be set with freedom, but also because the system parameters among all channels are independent. Numerical simulation results of optical image encryption based on four channel FRT and double random phase encoding are given to verify the feasibility of the method.  相似文献   

14.
We present a new optical image encryption algorithm that is based on extended fractional Fourier transform (FRT) and digital holography technique. We can perform the encryption and decryption with more parameters compared with earlier similar methods in FRT domain. In the extended FRT encryption system, the input data to be encrypted is extended fractional Fourier transformed two times and random phase mask is placed at the output plane of the first extended FRT. By use of an interference with a wave from another random phase mask, the encrypted data is stored as a digital hologram. The data retrieval is operated by all-digital means. Computer simulations are presented to verify its validity and efficiency.  相似文献   

15.
提出了一种基于离散余弦变换与混沌随机相位掩模的图像加密方法。起密钥作用的两块混沌随机相位掩模由二维Ushiki混沌系统生成,Ushiki混沌系统的初值和控制参数可以替代随机相位掩模作为加解密过程中的密钥,因此便于密钥管理和传输。通过对密钥敏感性、图像相邻像素间的相关性、抗噪声攻击及抗剪切攻击等分析表明,图像加密方法具有较强的抵抗暴力攻击、统计攻击、噪声攻击和剪切攻击能力。  相似文献   

16.
A position multiplexing method based on the modified Gerchberg-Saxton algorithm (MGSA) and a cascaded phase modulation scheme in the Fresnel transform domain is proposed in the multiple-image-encryption framework. First of all, each plain image is encoded into a complex function using the MGSA. The phase components of the created complex functions are then multiplexed with different position parameters, and summed. The phase part of the summation result is recorded in the first phase-only mask (POM). The MGSA is applied on the amplitude part of the summation result to determine another phase only function which is then recorded in the second POM. The simulation results show that the crosstalk between multiplexed images is significantly reduced compared with an existing similar method [20]. Therefore, the multiplexing capacity in encrypting multiple grayscale images can be increased accordingly.  相似文献   

17.
In this paper, an optical encryption system is proposed based on tricolor principle, Fresnel diffraction, and phase iterative algorithms. Different from the traditional encryption system, the encrypted image of this system is a color image and the plaintext of it is a gray image, which can achieve the combination of a color image and a gray image and the conversion of one image to another image. Phase masks can be generated by using the phase iterative algorithms in this paper. The six phase masks and the six diffracting distances are all essential keys in the process of decryption, which can greatly enhance the system security. Numerical simulations are shown to prove the possibility and safety of the method.  相似文献   

18.
A novel optical image encryption scheme is proposed based on quick response code and high dimension chaotic system, where only the intensity distribution of encoded information is recorded as ciphertext. Initially, the quick response code is engendered from the plain image and placed in the input plane of the double random phase encoding architecture. Then, the code is encrypted to the ciphertext with noise-like distribution by using two cascaded gyrator transforms. In the process of encryption, the parameters such as rotation angles and random phase masks are generated as interim variables and functions based on Chen system. A new phase retrieval algorithm is designed to reconstruct the initial quick response code in the process of decryption, in which a priori information such as three position detection patterns is used as the support constraint. The original image can be obtained without any energy loss by scanning the decrypted code with mobile devices. The ciphertext image is the real-valued function which is more convenient for storing and transmitting. Meanwhile, the security of the proposed scheme is enhanced greatly due to high sensitivity of initial values of Chen system. Extensive cryptanalysis and simulation have performed to demonstrate the feasibility and effectiveness of the proposed scheme.  相似文献   

19.
An image encryption is discussed based on the random phase encoding method in gyrator domains. An iterative structure of image encryption is designed for introducing more random phases to encrypt image. These random phase functions are generated by a two-dimensional chaotic mapping with the help of computer. The random phases are utilized for increasing the security of this encryption algorithm. In the chaotic mapping relation, the initial value and expression can serve as the key of algorithm. The mapping relation is considered secretly for storage and transmission in practical application in comparison to traditional algorithms. The angle parameter of gyrator transform is an additional key. Some numerical simulations have been given to validate the performance of the encryption scheme.  相似文献   

20.
Optical image encryption using fractional Fourier transform and chaos   总被引:4,自引:2,他引:2  
We propose a new method for image encryption using fractional Fourier transform and chaos theory. Random phase masks are generated using iterative chaos functions. The input image is combined with the first random phase mask at the object plane and is then transformed using the fractional Fourier transform. After the first fractional Fourier transform, the second random phase mask, again generated by using the chaos functions, is used at the fractional plane. The second fractional Fourier transform operation is then carried out to obtain the encrypted image. Three types of chaos functions have been used: the logistic map, the tent map and the Kaplan–Yorke map. The mean square error and the signal-to-noise ratio between the decrypted image and the input image for the correct order and the incorrect order of the fractional Fourier transform have been calculated. The computer simulations are presented to verify the validity of the proposed technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号