首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We designed a narrow bandpass terahertz wave filter using photonic crystals with a line defect. An inserted linear defect in one-dimensional photonic crystal structures for a channeled filtering in the terahertz range are studied and designed theoretically. By using transfer matrix method, we examined the transmittance spectra for the proposed terahertz wave filter has a 3 dB transmission loss bandwidth of 20 MHz ranging from 0.29998 THz to 0.30001 THz. The simulated results show that a very narrow transmission band and high transmission (higher than 99.99%) centered at λ0, and very sharp edges can be achieved.  相似文献   

2.
In this paper, we have explored and extended the use of frequency selective surface towards the terahertz regime of the electromagnetic spectrum where interesting applications such as imaging, sensing and communication exist. We have discussed a synthesis technique to design the single square loop frequency selective surface (SSLFSS) at 150 and 300 GHz which have found suitable application in the fast analysis and fabrication of the frequency selective surface. Moreover, the analytical results have been supported by the CST Microwave Studio and Ansoft HFSS commercial simulators. We have discussed the angular insensitivity of the SSLFSS at 150 GHz as well as 300 GHz. However, the specific problems arise at terahertz frequencies as compared to the radio and microwave frequencies are the ohmic losses. The proposed analysis has been extended from 100 GHz to 350 GHz to discuss the ohmic and dielectric losses. We have also discussed the other important issues which are very much significant in the terahertz regime of the spectrum such as skin depth and surface roughness.  相似文献   

3.
Generation of InAs-surface-emitted terahertz radiation by application of an ultrashort pulse 1060 nm parabolic fiber amplifier source is reported for the first time. The fiber amplifier delivers 100 fs pulses at a repetition rate of 75 MHz and an average power of maximum 12 W. This new excitation laser for surface-emitters generates high brightness broadband THz radiation ranging from 100 GHz to over 2.5 THz. THz detection is demonstrated based on two-photon absorption at low-temperature-grown GaAs dipole receivers.  相似文献   

4.
In this paper the design, implementation and performance analysis of four wave mixing (FWM) in optical communication system for different number of input channels is presented using various values of channel spacing. Here, all the input channels have been spaced evenly at various values like 6.25 GHz, 12.5 GHz, 25 GHz, 40 GHz, 50 GHz with the different number of channels at the input i.e. with 2, 4, 6, 8, 12 input channels. The simulation results reveal that the four wave mixing is minimum when the channel spacing is maximum i.e. 50 GHz with minimum number of channels i.e. 2 input channels. It is observed that on increasing the channel spacing, the interference between the input frequencies decreases and hence the four wave mixing also decreases. Also, on increasing the number of input channels/users, the interference between the input frequencies increases and thus, the four wave mixing also increases.  相似文献   

5.
We study theoretically and demonstrate experimentally light controllable terahertz wave switch. When the modulated optical excitation source is used to irradiate a high resistivity silicon wafer, a novel controllable terahertz wave switch is achieved. The results show that the ON-OFF response time is less than 150 ms and the attenuation of the novel terahertz wave switch is more than 20 dB at frequency of 0.315 THz.  相似文献   

6.
Graphene nano ribbon based terahertz patch antenna on polyimide substrate is designed and its radiation characteristics are investigated in the 725–775 GHz band. The terahertz communication system consists of higher data rate transmission, low transmit power with secured wireless communication. The proposed antenna consists of graphene nano ribbon as radiating patch and also the ground plane separated by a 20 μm thin polyimide substrate. The antenna has achieved the broad impedance bandwidth (>5%) in the band of operation. The design has yielded a peak gain of 5.71dB at 750 GHz. The antenna is simulated by using the finite element method based simulator Ansys - HFSS.  相似文献   

7.
A high-powered tunable terahertz wave (THz-wave) has been parametrically generated via a surface-emitted THz-wave parametric oscillator (TPO) pumped by a multi-longitudinal-mode Q-switched Nd:YAG laser. The effective parametric gain length was enlarged by employing two MgO:LiNbO3 crystals. The tunable THz-wave radiation from 0.8 to 2.8 THz was realized via varying phase-matching angle between the pump wave and the Stokes wave. The maximum THz-wave radiation was 173.9 nJ/pulse at 1.7 THz as the pump energy was 82 mJ, corresponding to an energy conversion efficiency of about 2.12 × 10−6 and a photon conversion efficiency of about 0.035%. The first-order, the second-order and the third-order Stokes waves were observed during the experiments.  相似文献   

8.
We theoretically investigate plasmonic properties of a calcium film in a Kretschmann excitation scheme. Based on surface plasmon polaritons, the absorbance of the calcium film can be as high as 100% for the p-polarization, much higher than the absorbance for the s-polarization at the wavelength of 422.7 nm, correspondingly to the g Fraunhofer line. The 45 nm thick film of calcium has a high reflectance of about 76% at 422.7 nm for s-polarization. But for p-polarization, there is a minimum in the reflectivity curves at the angle of 19°. The narrow-band filter based on calcium film is particularly suited for working with conventional calcium atomic filter and on-chip integration due to its solid-state bulky feature. Furthermore, the plasmonic filter based on the calcium film is described that may offers new applications in angle- and polarization-sensitive sensor and the detection of weak laser light.  相似文献   

9.
Nanocrystalline Fe-Ti-Si-Al flaky powders with large aspect ratio have been fabricated by high-energy planetary milling melt-spun ribbons. Magnetic composites made of thermally annealed Fe-Ti-Si-Al flaky powders embedded in epoxy resin exhibit excellent electromagnetic wave absorption properties in a wide frequency range from 100 MHz to 2.65 GHz. Ti additions can enhance the electrical resistivity of Fe-Si-Al alloy without changing the crystallographic structure, resulting in the reduction of eddy current loss at high frequencies. Moreover, the substitution of Ti for Fe enhances the cut-off frequency of flaky powder-polymer composites. Meanwhile, compared to the Ti-free composites, reflection loss of the Ti-doped composites (3 mm in thickness) is lower than −10 dB in the frequency range from 593 MHz to 1.83 GHz, indicating that the composites can effectively work in a wider frequency bandwidth.  相似文献   

10.
Electric and magnetic hybridized plasmonic modes are obtained by stacking two T-shaped resonators. We show that head-to-toe configuration leads to inverse the hybridization. The frequency shift between the resonances is finely controlled by adjusting the gap between the two resonators. A negative refractive index close to -1 is numerically and experimentally demonstrated at 4.3 GHz for TE waves. This left-handed behavior is similar for parallel and normal TE incident wave vectors. The proposed double-T unit cell is well adapted for developing terahertz and IR metamaterials.  相似文献   

11.
In this paper we investigated cesium Faraday filter at 852 nm in the relatively weak and strong magnetic field theoretically and experimentally. With a cesium cell of 0.02 m in length in an axial magnetic field of 0.06 T, the line-center operation has been achieved. The calculated peak transmission has reached 98.6% with a FWHM bandwidth of only 3.9 GHz, the measured FWHM bandwidth of the filter is 3.29 GHz, which is general agreement with the theoretical result.  相似文献   

12.
We demonstrate photonically-assisted generation of RF arbitrary waveforms using planar lightwave circuits (PLCs) fabricated on silica-on-silicon. We exploit thermo-optic effects in silica in order to tune the response of the PLC and hence reconfigure the generated waveform. We demonstrate the generation of pulse trains at 40 GHz and 80 GHz with flat-top, Gaussian, and apodized profiles. These results demonstrate the potential for RF arbitrary waveform generation using chip-scale photonic solutions.  相似文献   

13.
An all-optically generated millimeter wave carrier at 21.7 GHz, 43 GHz and 64.45 GHz are experimentally achieved. These frequencies are realized by generating two consecutively laser wavelengths and are detecting on the 70 GHz high-speed photo detector (HSPD). The initial mixing between the Brillouin pump and the second-order Stokes wavelengths is spaced by 0.178 nm. This spacing, which is doubled from an inherently generated Stokes shift, is accomplished through an isolated circulation of the first order Stokes wave in the double Brillouin Stokes shifter (DSBS) built with 25-km single mode fiber. The generated millimeter carrier is measured at 21.7 GHz, 43 GHz and 64.4 GHz achieved with BP power of 11 mW, 30 mW and 47 mW, respectively.  相似文献   

14.
Low density and thin thickness are essential for electromagnetic (EM) wave absorbers. In this study, we fabricated a novel micro-tubular iron nanocomposite (MTIC) that composed of carbon microtubes and monodisperse iron nanoparticles (NPs). The bulk density of MTIC is only 0.35±0.04 g cm−3 due to its micro-tubular structure. The presence of iron NPs increased the magnetic loss significantly and therefore enhanced the reflection loss (RL) of MTIC/paraffin composite. The optimum thickness for the composite is 1.5-1.8 mm, with maximum bandwidth of 7.6 GHz for RL<−5 dB and 3.6 GHz for RL<−10 dB. The corresponding frequency at this thickness is 10-18 GHz. Because of low density and broad bandwidth at thin thickness, MTIC is a promising light-weight absorber for EM wave absorption or microwave shielding. This study will also provide new ideas for fabricating microwave absorbers with low density and thin thickness.  相似文献   

15.
This paper describes the design of a large sized diamond window for 1 MW, 170 GHz gyrotron. The diameter and the thickness of the diamond window are 80 mm and 1.482 mm, respectively, whose edge is directly cooled by water. The CST microwave studio has been used for the S-parameter, and finite element analysis code ANSYS has been used for the thermal and the structural simulation. The return loss (S11) and insertion loss (S21) of the 170 GHz gyrotron window have been found −39.80 dB and −0.011 dB, respectively. The thermal and structural analysis of RF window the 397 K temperature at disk center and maximum displacement 0.01 mm has been found in the window disk during the thermal analysis.  相似文献   

16.
We demonstrate, for the first time, a tunable dual-wavelength terahertz wave power splitter based on the multimode interference effect and self-imaging principle in 1 × 2 × 2 photonic crystal waveguides. Both plane wave expansion method and finite-difference time-domain method are used to calculate and analyze the characteristics of the proposed device. The simulation results demonstrate that the power splitter not only split the input power into output1 and output2 branches with equal power at frequency of 1.09 THz, but also split the power into output3 and output4 branches symmetrically at frequency of 1.20 THz. Furthermore, for the frequency of 1.09 THz, the input terahertz wave power can be split into output1 and output2 branches with an arbitrary ratio by tuning the refractive index of the tuning rods.  相似文献   

17.
Electrical resistivity measurements have been carried out on thermally evaporated α-Mn thin film between 300 and 1.4 K using the van der Pauw four probe technique. The film was grown on a glass substrate held at a temperature of 373 K, in an ambient pressure of 5×10−6 Torr. The results show a resistance minimum, a notable characteristic of α-Mn but at a (rather high) temperature of 194±1 K. Below the resistivity maximum which corresponds to 70 K, the resistivity drops by only 0.02 μΩm indicating a rather short range magnetic ordering. The low temperature results show a tendency towards saturation of the resistivity as the temperature approaches zero suggesting a Kondo scattering.  相似文献   

18.
The generation and detection of guided wave terahertz (THz) transients in microstrip transmission line systems is demonstrated at both room and cryogenic (∼ 4 K) temperatures using thin film low-temperature-grown GaAs (LT-GaAs) switches, excited by a 100 fs, 80 MHz repetition rate pulsed Ti:Sapphire laser. The characterisation of passive filter elements formed in the microstrip line is reported, together with their response to the application of dielectric loads of varying thickness at room temperature.  相似文献   

19.
We propose a novel dispersion-based optical beamforming network scheme employing phase modulation and direct detection. Optical phase modulators have the advantages of simple-structure, low loss and absence of bias. Dispersion-induced phase-to-intensity conversion is utilized to facilitate direct detection. A structure of wideband dispersive device (WDD) cascaded with periodic dispersive device (PDD) is introduced to enhance the system flexibility, so that the delay adjustability and RF response can be properly designed respectively by choosing appropriate dispersions of the WDD and PDD. A concept-proof system with a wideband chirped fiber grating (CFG) as the WDD and two multiband CFGs (MCFG1 and MCFG2) as the PDD separately is built to demonstrate the basic idea. The delay tuning range is 0-1.8 ns with increment of 164.2 ps. The passband center is 30 GHz for MCFG1 and 20 GHz for MCFG2, and the fractional bandwidth is 51.8%. The shot-noise-limited spurious-free dynamic range is also analyzed and measured to be 105.7 dB ⋅ Hz2/3 when the average photocurrent is 2.7 mA.  相似文献   

20.
郭文龙  王光明  李海鹏  张昆  蔡通 《中国物理 B》2016,25(10):104101-104101
We propose an anisotropic planar transmitting metasurface, which has the ability to manipulate orthogonally-polarized electromagnetic waves in the reflection and refraction modes respectively. The metasurface is composed of four layered rectangular patches spaced by three layered dielectric isolators each with a thickness of 0.15λ0 at 15 GHz. By tailoring the sizes of the patches, the metasurface functions as a band-stop filter for the y-polarzied wave and a band-pass filter for the x-polarized wave operating from 14 GHz to 16 GHz. Moreover the phases of the transmitting x-polarized wave can be modulated at about 15 GHz, which contributes to beam steering according to the general refraction law. Experimental results are in good accordance with the simulated ones, in which the reflection efficiency is almost 100% while the transmission efficiency of the x-polarized wave reaches 80% at 15 GHz. Besides, the transmitted x-polarized wave is effectively manipulated from 14 GHz to 16 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号