首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hybrid optical-wireless access network (HOWAN) is a favorable architecture for next generation access network. It is an optimal combination of an optical backhaul and a wireless front-end for an efficient access network. In this paper, the HOWAN architecture is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul and a wireless fidelity (WiFi) technology at the wireless front-end. The HOWAN is proposed that can provide blanket coverage of broadband and flexible connection for end-users. Most of the existing works, based on performance evaluation are concerned on network layer aspects. This paper reports physical layer performance in terms of the bit error rate (BER), eye diagram, and signal-to-noise ratio (SNR) of the communication system. It accommodates 8 wavelength channels with 32 optical network unit/wireless access points (ONU/APs). It is demonstrated that downstream and upstream of 2 Gb/s can be achieved by optical backhaul for each wavelength channel along optical fiber length of 20 km and a data rate of 54 Mb/s per ONU/AP along a 50 m outdoor wireless link.  相似文献   

2.
In this paper, a spectral efficient hybrid wireless optical broadband access network (WOBAN) is proposed and demonstrated based on the transmission of wireless multi-input multi-output orthogonal frequency division multiplexing (MIMO OFDM) signals over wavelength division multiplexing passive optical network (WDM PON). By using radio over fiber (ROF) techniques, the optical fiber is well adapted to propagate multiple wireless services having different carrier frequencies. It is a known fact that multiple wireless signals having the same carrier frequency cannot propagate over a single optical fiber at the same time, such as MIMO signals feeding multiple antennas in fiber wireless (FiWi) system. A novel optical single-sideband frequency translation technique is designed and simulated to solve this problem. This technique allows four pairs of wireless MIMO OFDM signals with the same carrier frequency for each pair to be transmitted over a single optical fiber by using one optical source per wavelength. The crosstalk between the different MIMO channels with the same frequency is eliminated, since each channel is upconverted on specified wavelength with enough channel spacing between them. Also the maximum crosstalk level between the different MIMO channels with different frequencies is very low around ?76 dB. The physical layer performance of the proposed WOBAN is analyzed in terms of the bit error rate (BER), error vector magnitude (EVM), and signal-to-noise ratio (SNR). The proposed WOBAN achieves 7.68 Gb/s data rate for 20 km for the optical back-end and 240 Mb/s for the outdoor wireless front-end.  相似文献   

3.
An extended reach 10 Gb/s wavelength division multiplexing passive optical networks (WDM-PONs) system based on reflective semiconductor optical amplifier (RSOA) is proposed by using power pre-emphasized orthogonal frequency division multiplexing (OFDM) signal. Experimental results show that the proposed technique can effectively enhance the system performance against the limited bandwidth and chirp induced fading effect from direct modulation of RSOA. The receiver sensitivity is improved by 5 dB at the limit of BER for forward error correction (FEC) code over the 60 km and 85 km fiber transmission without any dispersion compensation module.  相似文献   

4.
In this investigation, we propose and investigate the simple self-injection locked Fabry-Perot laser diodes (FP-LDs) in optical line terminal (OLT); and wavelength-tunable optical network unit (ONU) using reflective optical semiconductor amplifier (RSOA) and FP-LD laser for downstream and upstream traffic in long reach (LR) wavelength division multiplexed-passive optical network (WDM-PON) respectively. The output performance of the proposed two laser sources in terms of power and side-mode suppression ratio (SMSR) has been discussed. Here, for the downstream traffic, the proposed optical transmitter can be directly modulated at 2.5 Gb/s on-off keying (OOK) format with nearly 0.4 dB power penalty at bit error rate (BER) of 10−9 through 75 km single-mode fiber (SMF) transmission. Moreover, the proposed upstream transmitter can be directly modulated at 1.25 and 2.5 Gb/s with nearly 0.5 and 1.1 dB power penalty, respectively, at the BER of 10−9.  相似文献   

5.
A periodic add/drop system in a fiber ring network was investigated using a reconfigurable optical add/drop multiplexer (ROADM) in a re-circulating fiber loop. After seven cascaded add/drop nodes at every 150 km along the transmission, at bit error ratio (BER) equals to 10−9 and data rate of 10 Gbps, we observed a 2.5 dB power penalty for the passing through channels with 1050 km transmission distance, and 0.3 dB sensitivity penalty variation for the periodic add/drop channels at every 150 km, respectively.  相似文献   

6.
Optical CDMA technique is required to meet the increased demand for high speed, large capacity communications in optical networks. OCDMA assures data access security and supports asynchronous burst data transmission. In this paper, improvement in optical CDMA has been done by implementing forward error correction technique and a distance of 100 km was achieved BER 10−19 at bit rate 3.75 Gbps with forward error correction in optical CDMA.  相似文献   

7.
We investigated 20 channels at 10 Gb/s wavelength division multiplexing (WDM) transmission over 1190 km single mode fiber and dispersion compensating fiber using cascaded inline semiconductor optical amplifier at a span of 70 km for RZ-DPSK (return zero differential phase-shift keying) modulation format by using same channel spacing, i.e. 100 GHz. We show for RZ-OOK (return zero on-off keying) format a transmission distance of up to 1050 km with Q factor more than 15 dB, without any power drops. We developed the SOA model for inline amplifier having minimum cross-talks and ASE (amplified spontaneous emission) noise power with sufficient gain. At optimal bias current of 400 mA, a high constant gain of 36.5 dB is obtained up to a saturation power of 21.36 mW. So reduction of cross-talk and distortion is possible by decreasing the bias current at appropriate amplification factor.The DPSK modulation format has less cross-talk as compared to OOK format for nonlinearities and saturation case. The impact of optical power received and Q factor at different distance for both RZ-OOK and RZ-DPSK modulation format has been illustrated. We have shown the optical spectrum and clear Eye diagram at the transmission distance of 1190 km in RZ-DPSK system and 1050 km in RZ-OOK systems.The bit error rate (BER) for all channels observed is less than 10−10 up to gain saturation for both DPSK and OOK systems. Finally, we investigated that the transmission distance decreases with a decrease in channel spacing of up to 20 GHz.  相似文献   

8.
100 Gb/s on-off keying (OOK) transmission over 212 km installed standard single-mode fibers using an Indium Phosphide (InP)-based electrical clock-data-recovery (CDR) and demultiplexer module was demonstrated. 5.5 × 10− 11 bit error rate (BER) performance was achieved and 1.1-dB optical signal-to-noise ratio (OSNR) penalty was required at 10− 9 BER after transmission.  相似文献   

9.
This paper presents an efficient algorithm to cancel the parallel interference for multiuser detection (MUD) schemes in code division multiple access (CDMA) based 20.48 Gb/s optical multiple input multiple output orthogonal frequency division multiplexing (O-MIMO-OFDM) system over 1200 km of standard single mode fiber (SSMF). The performance of the system is compared by simulation results using the efficient algorithm and minimum mean square error (MMSE) schemes. It shows the superior performance of efficient algorithm.  相似文献   

10.
In this article, the spectrum sliced dense wavelength division multiplexed passive optical network (SS-DWDM–PON) has been investigated as a power efficient and cost effective solution for optical access networks. In this work an AWG demultiplexer is used to operate as slicing system. The high speed SS-DWDM system has been realized and investigated for 32 channels with data rate up to 3 Gb/s using broadband ASE source (LED). The 3 Gb/s signals both non-return-to-zero (NRZ) and return-to-zero (RZ) were demonstrated in 40 km optical fiber link with BER < 10−12. The results obtained here demonstrate that SS-DWDM is well suited for Fiber-to-the-Home (FTTH) network.  相似文献   

11.
The dual sideband optical carrier suppression (DSB-OCS) technique is employed in the optical carrier generation for 40 GHz radio over fiber (ROF) system. A dual electrode Mach-Zehnder modulator (DE-MZM) with the minimum transmission bias (MiTB) technique is employed to build the system. The results show that, a 40 GHz carrier is successfully generated with the amplitude up to −29 dBm and signal to noise ratio (SNR) of 35 dB and a high definition (HD) signal is successfully transmitted using the system. Finally, the bit error rate (BER) measurement is carried out for the system with 1.25 Gbps OOK signal showing an error free 40 GHz ROF system with almost no penalty between the back to back and 20 km fiber for a BER of 10−9.  相似文献   

12.
In this paper, we have investigated the wavelength division multiplexed (WDM) system using ring network topology. This network is used to increase the capacity with eight optical add/drop multiplexers (OADMs) by using dispersion compensating fiber and semiconductor optical amplifier (SOA) to achieve a distance up to 1600 km. It is observed that network shows the acceptable results at 15 Gbps data rate with 100 GHz channel spacing. The OADM nodes are also varied to investigate the network performance in the term of BER and Q-factor.  相似文献   

13.
Surinder Singh  R.S. Kaler 《Optik》2007,118(2):74-82
We numerically simulated the ten channels at 10 Gb/s dense wavelength division multiplexing (DWDM) transmission faithfully over 17,227 km using 70 km span of single mode fiber (SMF) and dispersion compensating fiber (DCF) using optimum span scheme at channel spacing 20 GHz. For this purpose, inline optimized semiconductor optical amplifiers (SOAs) and DPSK format are used. We optimized the SOA parameters for inline amplifier with minimum crosstalk and amplified spontaneous emission noise with sufficient gain at bias current 400 mA. For this bias current, constant gain 36.5 dB is obtained up to saturation power 21.35 mW. We have also optimized the optical phase modulator bandwidth for 400 mA current which is around 5.5 GHz with crosstalk −14.2 dB between two channels at spacing 20 GHz.We show the 10×10 Gb/s transmission over 70 km distance with inline amplifier has good signal power received as compared to without amplifier, even at equal quality factor. We further investigated the optimum span scheme for 5670 km transmission distance for 10×10 Gb/s with channel spacing 20 at 5.5 GHz optical phase modulator bandwidth. As we increase the transmission distance up to 17,227 km, there is increase in power penalty with reasonable quality.The impact of optical power received and Q factor at 5670 and 17,227 km transmission distance for different span schemes for all channels has been illustrated. For launched optical power less than saturation, all channels are obtained at bit error rate floor of 10−10.  相似文献   

14.
This paper presents an algorithm to minimize the performance loss (PL) of minimum mean square error (MMSE) in code division multiple access (CDMA) based optical multiple input multiple output orthogonal frequency division multiplexing (O-MIMO-OFDM) systems over 1200 km of standard single mode fiber (SSMF). The performance of the system using proposed algorithm scheme is compared to MMSE scheme by simulation results. It shows the superior performance of proposed algorithm.  相似文献   

15.
The limitation of the system with dispersion compensation by chirped fiber Bragg gratings is investigated in this paper. The transmission distance of the system based on chirped fiber Bragg gratings surpasses 3000 km. The bit error rate (BER) of the system is below 10−9 for as long as 2000 km. The BER is about 10−7 at 3000 km and, when forward error correction (FEC) is added, zero BER can be achieved. It is the longest transmission system with dispersion compensation by chirped fiber Bragg gratings.  相似文献   

16.
Presently, optical access networks are in great demand to meet the bandwidth requirement due to rapid growth in high speed applications for smart devices, cloud computing, big data analysis and other 5G applications. In this paper, 5?×?10 Gb/s wavelength division multiplexing carrier-less amplitude phase modulation-passive optical network (WDM-CAP-PON) with frequency comb is proposed and demonstrated. Also, 450 nm blue laser diode having bandwidth 0.8 GHz is used for visible light communication using 6 m FSO link to support cost effective high data rate optical network. The WDM-CAP-PON employing orthogonal frequency division multiplexing has been analysed in terms of tolerance to the fiber non-linearities through the effect of variations in launch power (??5 to 4 dBm), datarate (2.5–40 Gb/s) and distance (20–110 km) on Q-factor and error vector magnitude (EVM%) by considering pre-, post- and symmetrical-dispersion compensation schemes. It is reported that post-compensation is superior to pre- and symmetrical-compensation schemes to achieve the minimum 3.8?×?10?3 BER under 7% forward error correction (FEC). The faithful transmission distance achieved for 10 Gb/s WDM-CAP-PON using post dispersion compensation scheme is 110 km.  相似文献   

17.
In this study, firstly we presented a wavelength division multiplexed (WDM) transmission system derived from the coherent optical orthogonal frequency division multiplexing (CO-OFDM) with polarization division multiplexing (PDM) and 64 order quadrature amplitude modulation (QAM). We then proposed an improved channel estimation method based on discrete Fourier transform for the system to further improve the performance of the WDM transmission system. Under the experimental conditions employed, the principle and the spectral efficiency of the system, including a proposed algorithm to improve its performance (e.g. the robustness of the transmission impairments of the system) were studied. The simulations results demonstrated that our method improved the system efficient significantly. The system signal at 24 Tb/s can achieve a spectral efficiency of 12.5 bit/s/Hz up to a distance of 2000 km.  相似文献   

18.
We propose leveraging one-dimensional expanded Hybrid codes (1-D E-Hybrid codes) for two-code keying (TCK) in spectral amplitude coding (SAC) optical code division multiple access (OCDMA) networks. Compared with the existing work, the proposed system can utilize all codes and provide a larger code size to support more simultaneous users. The numerical results demonstrate that the 1-D E-Hybrid codes for TCK outperform the existing 1-D approaches in terms of bit error rate (BER), and the data transmission rate can achieve 2.5 Gbps.  相似文献   

19.
We have demonstrated a bidirectional reflective semiconductor optical amplifier (RSOA) based on wavelength division multiplexing ROF network utilizing an offset quadrature differential phase shift keying (OQPSK) signal for down-link and an on-off keying (OOK) signal re-modulated for up-link. A 50 km range colorless WDM-ROF without dispersion compensation was demonstrated for both 1 Gbit/s downstream and upstream signals. The BER performance of our scheme shows that our scheme is a practical solution to meet the data rate and cost-efficient of the optical links simultaneously in tomorrow's ROF access networks.  相似文献   

20.
In this paper, it is shown that at a high bit rate of 80-Gb/s alternate polarization of adjacent bits in a Wavelength Division Multiplexed (WDM) transmission link improves the system performance in terms of improved Q factor and minimum bit error rate (BER). Alternate Polarization Return to Zero (al-PRZ) further suppresses the non-linear effects at higher power levels of 25 dBm per channel and also improves the transmission length to 640 km for a N × 80-Gb/s WDM system and hence results in an improvement of BER to 10−20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号