首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tight focusing of a double-ring-shaped, azimuthally polarized beam   总被引:1,自引:0,他引:1  
Tian B  Pu J 《Optics letters》2011,36(11):2014-2016
We study the focusing properties of a double-ring-shaped azimuthally polarized beam through an annular high NA objective lens. It is shown that a subwavelength focal hole (~0.5λ) with a quite long depth of focus (~26λ) is achieved near the focus. This kind of nondiffracting focal hole is called dark channel, which may have applications in atom optical experiments, such as with atomic lenses, atom traps, and atom switches.  相似文献   

2.
We study theoretically routes toward the most confined dark channel that can be obtained using high angular aperture focusing. One possible solution is to use a radially polarized beam combined with an optical singularity. Another possibility is to use an azimuthally polarized light beam combined with an annular aperture or a phase filter. Our results suggest that a focal hole of full-width at half maximum of approximately 0.3λ0/NA is achievable, where λ0 is the wavelength in vacuum and NA is the numerical aperture of the focusing system. Finally, we show that by letting a phase-shifted plane wave and a focused scalar wave interfere only one point in the focal plane will exhibit zero intensity. Advantages and disadvantages of the schemes are discussed.  相似文献   

3.
We investigate the interesting focal properties of phase modulation azimuthally polarized annular multi Gaussian beam employing a high numerical aperture (NA) lens on the basis of vector diffraction theory. We observe that our proposed system generates a sub wavelength focal hole of \(0.43 \uplambda \) having large uniform focal depth of \(84 \uplambda \) . This kind of nondiffracting focal hole is called dark channel, which may have applications in atom optical experiments, such as with atomic lenses, atom traps, and atom switches.  相似文献   

4.
We study the focusing properties of a tight focusing of double ring shaped azimuthally polarized beam through complex phase mask (CPM) with high NA objective lens, based on vector diffraction theory. A novel design to generate an azimuthally polarized subwavelength focal hole having FWHM of 0.332λ with long focal depth of about 18.8λ is illustrated numerically. Apart from generating focal hole with long focal depth, it is observed that a properly designed CPM also generates multiple focal hole segments useful for laser cutting, microscopy and the manipulation of optical traps of low refractive index particles.  相似文献   

5.
Focusing a radially polarized annular Gaussian beam with a gradient Mikaelian’s microlens is simulated using a radial version of the FDTD method (finite-difference time domain), in which Maxwell’s equations in the cylindrical coordinates are solved in the MATLAB 7.0 environment. We show that the focal spot size (the area with larger-than half-maximum intensity) can be made as small as 0.126λ2, with focal spot diameter being 0.40λ.  相似文献   

6.
Based on the vector diffraction theory, the effect of complex phase plate on the intensity distribution of TEM11 mode azimuthally polarized Laguerre–Gaussian beam in the focal region of high NA lens is investigated theoretically. It is observed that a properly designed complex phase plate can generate a subwavelength focal hole having FWHM of 0.332λ with an extended focal depth of 54.4λ. We also observe that by using properly designed complex phase plate generates novel focal patterns including splitting of focal holes and multi focus are obtained. The author expects such investigation is worthwhile for optical manipulation and material processing technologies.  相似文献   

7.
The intensity distribution in the focal region for the azimuthally polarized beam phase-encoded by the binary 0/π phase plate is calculated on the basis of the vector diffraction theory. With the annular pupil aperture employed, the resolution of the focal spot will be improved remarkably. We demonstrate a sharper focal spot with full width at half maximum (FWHM) of 0.223λ (below λ/4), significantly smaller that of linear, circular and radial polarization beam under the same condition. The focusing phenomena for illumination beam with various polarization status and beam shapes are analyzed explicitly. This analysis could have potential applications in confocal microscopy and two-photo microscopy for polarization difference imaging.  相似文献   

8.
Focusing properties of the radially polarized axisymmetric Bessel-modulated Gaussian beam with quadratic radial dependence (QBG beam) and annular aperture are investigated theoretically by vector diffraction theory. Simulation results show that the intensity distribution in the focal region of the radially polarized axisymmetric QBG beam can be adjusted considerably by small beam parameter (μ) and annular aperture (δ). When μ increases, the focal spot may change to focal hole and changes focal pattern remarkably. On introducing annular aperture, focus can split or extends along the optical axis for different μ. In this paper, we have shown the generation of the focal spot, dark focal spot, focal split and increase in focal depth in the axial direction of the incident beam propagating through the aligned optical system.  相似文献   

9.
Focusing properties of the azimuthally polarized axisymmetric Bessel-modulated Gaussian beam with Quadratic Bessel Gaussian (QBG beam) and annular aperture are investigated theoretically by vector diffraction theory. Simulation results show that the intensity distribution in focal region of the azimuthally polarized axisymmetric QBG beam can be shifted along optical axis considerably by changing parameter (C). On introducing annular aperture (δ), focal pattern at the focus extends along optical axis. In this paper, we have shown the generation of focal hole and focal shifting in the axial direction of incident beam propagating through aligned optical system which is suitable for application such as optical manipulation and optical trapping.  相似文献   

10.
Tight-focusing properties of cylindrical vector circular Airy beams [i.e., azimuthally polarized (AP) circular Airy beam and radially polarized (RP) circular Airy beam] passing through a high numerical aperture thin lens are investigated in detail. It is found that a super long subwavelength dark channel with full width at half maximum about 0.49λ and depth of focus (DOF) about 52λ can be achieved near the focal region for the case of tight focusing of an AP circular Airy beam, and a super long needle with DOF about 27.5λ of strong longitudinally polarized field can be obtained near the focal region for the case of tight focusing of a RP circular Airy beam. Furthermore, we report experimental generation of an AP circular Airy. Our results will be useful for atom guiding and trapping, particle acceleration and fluorescent imaging.  相似文献   

11.
陈建农  徐钦峰  王刚 《中国物理 B》2011,20(11):114211-114211
The focusing of a radially polarized beam without annular apodization ora phase filter at the entrance pupil of the objective results in a wide focus and low purity of the longitudinally polarized component. However, the presence of a physical annular apodization or phase filter makes some applications more difficult or even impossible. We propose a radially polarized and amplitude-modulated annular multi-Gaussian beam mode. Numerical simulation shows that it can be focused into a sharper focal spot of 0.125λ2 without additional apodizations or filters. The beam quality describing the purity of longitudinally polarized component is up to 86%.  相似文献   

12.
We investigate the focusing properties of a radially polarized Bessel Gaussian beam by a high numerical aperture (NA) lens based on vector diffraction theory. We observe that our proposed system generates a sub wavelength focal spot of 0.42λ having large uniform focal depth of 6.45λ. The authors expect such a long depth of focus have great potential for use in optical, biological, high-resolution and atmospheric sciences.  相似文献   

13.
We propose to use diffractive optical element in combination with high NA lens axicon to achieve a high depth of focus when illuminated by a circularly polarized beam. With this kind of system, the focal depth is increased to 12.816λ and the magnetic spot size is reduced to 0.3764λ. However, in the conventional lens with same NA, the FWHM of the magnetic spot is found to be 0.4308λ and its corresponding magnetization depth is only 0.888λ. The author expects that such a high focal depth strong longitudinal magnetic field with large magnetization depth can be widely used in high density magneto optic recording, laser machining, laser cutting and the scanning near-field magnetic microscope.  相似文献   

14.
We study black holes in the Ho?ava–Lifshitz gravity with a parameter λ. For 1/3≤λ<3, the black holes behave the Lifshitz black holes with dynamical exponent 0<z≤4, while for λ>3, the black holes behave the Reissner–Nordström type black hole in asymptotically flat spacetimes. Hence, these all are quite different from the Schwarzschild–AdS black hole of Einstein gravity. The temperature, mass, entropy, and heat capacity are derived for investigating thermodynamic properties of these black holes.  相似文献   

15.
We theoretically demonstrate the creation of sub-wavelength focal spot with ultra long depth of focus (DOF) non-diffracting. To achieve a sub-half-wavelength focal spot (0.4λ) with modulation, extended DOF (over 9.5λ) in vacuum, an integration of amplitude phase encoding, cylindrical polarization and the combination of dual-beams is utilized. Further analysis also predicts that a flattop intensity distribution along z axis can be observed around the ideal focus point.  相似文献   

16.
Based on vectorial Debye theory, tight focusing of x-polarized beam with high NA lens axicon is studied. The high NA lens axicon utilizes spherical aberration to duplicate the performance of an axicon and to create an extended focal line. The intensity distribution in the focal region is illustrated by numerical calculations. We show that the high NA lens axicon system can generates a sub wavelength beam (0.826λ) with depth of focus around 10λ.  相似文献   

17.
18.
Based on vectorial diffraction theory, the effect of annular apodization on tightly focused azimuthally polarized Bessel-modulated Gaussian beam (QBG) are investigated theoretically. The numerical results show that the intensity distribution in focal region of the incident beam can be altered considerably by changing beam parameter (μ) and introducing annular apodization (δ). Beam parameter induces the focal splitting in transverse direction, while annular apodization leads to change in focal pattern along optical axis of the focusing system. More interesting, the focal splitting may be in continuous in certain case of incident beam propagating through aligned optical system which is suitable for application such as optical manipulation and optical trapping.  相似文献   

19.
It is proposed that superconductors possess a hidden ‘hole core’ buried deep in the Fermi sea. The proposed hole core is a small region of the Brillouin zone (usually at the center of the zone), where the lowest energy states in the normal state reside. We propose that in the superconducting state these energy states become singly occupied with electrons of a definite spin helicity. In other words, that holes of a definite spin helicity condense from the top to the bottom of the band in the transition to superconductivity, and electrons of that spin helicity ‘float’ on top of the hole core, thus becoming highly mobile. The hole core has radius q0 = 1/2λL, with λL the London penetration depth, and the electrons expelled from the hole core give an excess negative charge density within a London penetration depth of the real space surface of the superconductor. The hole core explains the development of a spin current in the transition to superconductivity (Spin Meissner effect) and the associated negative charge expulsion from the interior of metals in the transition to superconductivity, effects we have proposed in earlier work to exist in all superconductors and to be at the root of the Meissner effect.  相似文献   

20.
We investigate slowly rotating black holes in the Ho?ava–Lifshitz (HL) gravity. For Λ W =0 and λ=1, we find a slowly rotating black hole of the Kehagias–Sfetsos solution in asymptotically flat spacetimes. We discuss their thermodynamic properties by computing mass, temperature, angular momentum, and angular velocity on the horizon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号