首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have designed a tunable two dimensional (2D) channel drop filter (CDF) based on photonic crystal ring resonators (PCRR). Dropping efficiency and Q factor of single improved ring are 100% and 842, respectively. In this filter the quality factor is significantly improved with respect to other published reports. We investigate parameters which have an effect on resonant wavelength in this CDF, such as dielectric constant of inner, coupling, adjacent and whole rods of the structure and radius of inner rods. The transmission spectrum for our proposed configuration has been investigated using the 2D finite difference time domain (FDTD) method. The area of the proposed structure is about 117 μm2.  相似文献   

2.
We propose optical cross connect filters using photonic crystal ring resonators coupled waveguide crossings. We investigate the properties of this component numerically by using the finite-difference time-domain method. Our simulations reveal that the photonic crystal based cross connect filter has more than 92% normalized transmission. Extending our concept for cross connection applications, we demonstrate a 1 × 2 PC-based cross connect filter which utilizes a heterostructure. In this filter, at the resonance of each ring resonator, the normalized power transferred to the related waveguide of the two drop waveguides is found to be more than 91%.  相似文献   

3.
In this paper, a new optical channel drop filter (CDF) using photonic crystal ring resonators (PCRRs) is presented. Using the two-dimensional (2D) finite-difference time-domain (FDTD) method in triangular lattice photonic crystal (PC) silicon rods, 100% forward dropping efficiency and a quality factor of more than 1000 can be achieved in third communication window while the resonant wavelength is 1550 nm. Through this novel (CDF), a multi-CDF operation with 100% drop efficiencies across all channels can be obtained. The proposed device could be used in future coarse wavelength division multiplexing (CWDM) communication systems.  相似文献   

4.
In this paper using elliptical resonant ring we proposed a channel drop filter based on photonic crystal structures suitable for optical communication applications. The drop efficiency and the quality factor of our proposed filter is 100% and 647. We also investigated the optical properties of different configurations of the proposed photonic crystal ring resonator such as vertical ring, dual ring and triple ring structures. According to the results different configurations show different optical properties, so for vertical, double and triple ring configurations the quality factor will be 387, 865 and 1559, respectively.  相似文献   

5.
This paper describes elaboration of two dimensional photonic crystal structures based on Thue–Morse sequence. Our results establish that the optical properties of these aperiodic multilayer systems can be tailored by adjusting either the radius of some cells of the proposed structure or defect characteristics. We introduce a resonant cavity in the proposed structure to select desirable wavelengths for filtering. Bandwidth of selected wavelengths are about 1 nm and suitable for communication applications. Also, our simulations show that efficiency of the proposed structure is enough. The total footprint of proposed filter is 331.24 μm2, therefore it is suitable to be integrated in all optical chips.  相似文献   

6.
A 4-channel wavelength division demultiplexer based on photonic crystal structures suitable for WDM communication applications is proposed. In order to improve the wavelength selectivity we introduce four scattering rods above and under the X-shaped ring resonators in the proposed structure. It is shown that the PBG of the structure is tuned for communication systems in both TE and TM modes but the results demonstrated that just the first PBG in TM mode is suitable for WDM applications, so all the simulations will be done in TM mode. The minimum and maximum crosstalk between channels is −23.7 dB and −7.5 dB, respectively. Also, the average channel spacing in this structure is 3 nm.  相似文献   

7.
A new optical channel drop filters (CDFs) configuration based on photonic crystals ring resonators (PCRRs) is provided. The transmission characteristics for single-ring and multiple-ring configurations have been investigated by using the two-dimensional (2D) finite-difference time-domain (FDTD) technique in triangular lattice photonic crystal (PC) silicon rods. Both forward and backward dropping were achieved in dual-ring PCRR structures. In this filter, 100% drop efficiency and acceptable quality factor can be obtained at 1550 nm. The present device can be used in the future photonic integrated circuits.  相似文献   

8.
A periodic add/drop system in a fiber ring network was investigated using a reconfigurable optical add/drop multiplexer (ROADM) in a re-circulating fiber loop. After seven cascaded add/drop nodes at every 150 km along the transmission, at bit error ratio (BER) equals to 10−9 and data rate of 10 Gbps, we observed a 2.5 dB power penalty for the passing through channels with 1050 km transmission distance, and 0.3 dB sensitivity penalty variation for the periodic add/drop channels at every 150 km, respectively.  相似文献   

9.
Surinder Singh  R.S. Kaler 《Optik》2007,118(2):74-82
We numerically simulated the ten channels at 10 Gb/s dense wavelength division multiplexing (DWDM) transmission faithfully over 17,227 km using 70 km span of single mode fiber (SMF) and dispersion compensating fiber (DCF) using optimum span scheme at channel spacing 20 GHz. For this purpose, inline optimized semiconductor optical amplifiers (SOAs) and DPSK format are used. We optimized the SOA parameters for inline amplifier with minimum crosstalk and amplified spontaneous emission noise with sufficient gain at bias current 400 mA. For this bias current, constant gain 36.5 dB is obtained up to saturation power 21.35 mW. We have also optimized the optical phase modulator bandwidth for 400 mA current which is around 5.5 GHz with crosstalk −14.2 dB between two channels at spacing 20 GHz.We show the 10×10 Gb/s transmission over 70 km distance with inline amplifier has good signal power received as compared to without amplifier, even at equal quality factor. We further investigated the optimum span scheme for 5670 km transmission distance for 10×10 Gb/s with channel spacing 20 at 5.5 GHz optical phase modulator bandwidth. As we increase the transmission distance up to 17,227 km, there is increase in power penalty with reasonable quality.The impact of optical power received and Q factor at 5670 and 17,227 km transmission distance for different span schemes for all channels has been illustrated. For launched optical power less than saturation, all channels are obtained at bit error rate floor of 10−10.  相似文献   

10.
We report here 1 × 3 and 1 × 2 photonic drop splitters (PDSs) with different splitting ratios based on self-collimation ring resonators (SCRRs) in an air-hole silicon photonic crystal. An 1 × 3 PDS consists of four beam splitters and an 1 × 2 PDS consists of three beam splitters and one mirror. Light propagates in the PDSs employing self-collimation effect. The theoretical transmission spectra at different drop ports in PDSs were analyzed with the multiple-beam interference theory. Then they were investigated with the finite-difference time-domain (FDTD) simulation technique. The simulation results agree well with the theoretical prediction. For the drop wavelength 1550 nm, the free spectral range of the PDSs is about 29 nm, which almost covers the whole optical communication C-band window. Because of small dimensions, air-hole structure and whole-silicon material, the proposed PDSs hold great potentials for applications in photonic integrated circuits.  相似文献   

11.
In this work the optical and the gas sensing properties of thick TiO2 waveguide films, produced by pulsed laser deposition, were investigated by m-line spectroscopy. The films were deposited on (0 0 1) SiO2 substrates at temperature of 100 °C. The thickness of the films was measured to be in the range from 650 to 1900 nm and the roughness increases from 5 to 14.6 nm. High quality mode spectra, consisted of thin and bright TE and TM modes, were observed in the films with thickness up to 1200 nm. All the films revealed anisotropic optical properties. Gas sensitivity of the films to CO2 was examined at room temperature on the basis of the variations of the refractive index. CO2 concentration of 3 × 104 ppm was detected, which corresponds to a refractive index variation of about 1 × 10−4. The crystal structure and the optical transmittance of the films were also presented and discussed.  相似文献   

12.
A four-channel wavelength demultiplexer based on photonic crystal ring resonators (PCRR), which can be used for photonic integrated circuits, is designed. Dropping efficiency and Q factor of single improved ring are 100% and 842, respectively. In order to achieve the structure of demultiplexer, three improved rings have been used, that every ring has an individual inner rod radius; it means that each ring has a varying resonant wavelength. The results of simulation using finite-difference time-domain (FDTD) method in our proposed structure reveals an average transmitted power higher than 90% for each output port, Channel spacing is about 8 nm and bandwidth for each individual channel is about 2.8 nm. The mean value of the crosstalk between output channels and the area of the proposed structure are about −29 dB and 317 μm2, respectively. By changing the radius of inner rods, various wavelengths can be chosen, therefore this device is tunable.  相似文献   

13.
A new nonlinear dispersion flattened photonic crystal fiber with low confinement loss is proposed. This fiber has threefold symmetry core. The doped region in the core and the big air-holes in the 1st ring can make high nonlinearity in the PCF. And the small air-holes in the 1st ring and the radial increasing diameters air-holes rings in cladding can be used to achieve the dispersion properties of the PCF. We can achieve the optimized optical properties by carefully selecting the PCFs structure parameters. A PCF with flattened dispersion is obtained. The dispersion is less than 0.8 ps/(nm km) and is larger than −0.7 ps/(nm km) from 1.515 μm to 1.622 μm. The nonlinear coefficient is about 12.6456 W−1 km−1, the fundamental mode area is about 10.2579 μm2. The confinement loss is 0.30641 dB/km. This work may be useful for effective design and fabrication of dispersion flattened photonic crystal fibers with high nonlinearities.  相似文献   

14.
We present here a novel proposal for multichannel narrowband DWDM filter design, based on Generalized Aperiodic Thue-Morse (GATM) multilayer structures. Transmission spectra of light propagation through these structures are studied in this article. Numerical simulations in this research show an ultra high efficiency and a very low crosstalk for this filter so that the total transmission of filter output channels is up to 100% and the range of output wavelength is 1550 nm which is suitable for DWDM communication systems. By studying the effects of parameters of GATM structure, we realized that by varying parameters such as number of layers, distance between layers, refractive index of layers, etc., a suitable DWDM filter can be accomplished, which is in accordance with the communication ITU-T standard. This narrowband DWDM filter has capability of changing the number of channels and the bandwidth of each channel, at the special wavelength. By changing the thickness of each layer, the transmittance wavelength of the filter will change. The main advantage of the Thue-Morse structure is the numbers of selective layers, which in our designed structure, we choose GATM(3,2) where m = 3 and n = 2 in BmAn, and for the first time we change both m and n simultaneously in the proposed structure to control optical properties of the introduced filter.  相似文献   

15.
A new semi-organic nonlinear optical (NLO) material l-cystine hydrochloride (LCHCl) was grown in large size measuring 19 × 5 × 3 mm3 by slow solvent evaporation technique for the first time in literature. The cell parameter values were determined by single crystal X-ray diffraction studies. Fourier Transform Infrared spectroscopic analysis was carried out on the grown sample to ascertain the fundamental functional groups. Thermal behavior of the grown LCHCl sample was analyzed by TG & DTA analysis. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester. The optical transmission studies and second harmonic generation (SHG) efficiency studies justified the device quality of the grown crystal and the SHG study reveals that the grown sample has nearly 1.2 times higher efficiency than that of potassium dihydrogen phosphate (KDP), a well known NLO material.  相似文献   

16.
Considering the optical stability of solution, the sugar-solution is infused into the outer core ring of dual-concentric-core photonic crystal fiber (DCCPCF). The influences of structure parameters and solution concentration on the phase and loss matching are comprehensively analyzed. By choosing the appropriate outer core mode to completely couple with the inner core fundamental mode, the large negative dispersion PCF around 1.55 μm is designed, which has the dispersion value of − 39,500 ps/km/nm as well as bandwidth of 7.4 nm and effective mode area of 28.3 μm2. The designed PCF with hybrid cladding structure can effectively compensate the positive dispersion of conventional single mode fiber, and suppress the system perturbation caused by a series of nonlinear effects. Considering the mode field mismatching between the DCCPCF and the tapered fiber, the calculated connection loss around 1.55 μm is below 3 dB. In addition, the equivalent propagation constants of two leaky modes are deduced from the coupled-mode theory, and the complete mode coupling case can be well predicted by comparing the real and imaginary parts of propagation constants.  相似文献   

17.
We have fabricated 9-channel silicon wavelength-division-multiplexing (WDM) ring filters using 193 nm deep-ultraviolet (DUV) lithography and investigated the spectral properties of the ring filters by comparing the transmission spectra with and without an upper cladding. The average channel-spacing of the 9-channel WDM ring filter with a polymeric upper cladding is measured about 1.86 nm with the standard deviation of the channel-spacing about 0.34 nm. The channel crosstalk is about −30 dB, and the minimal drop loss is about 2 dB.  相似文献   

18.
Abstract

A new optical filter design based on a two-dimensional photonic crystal ring resonator structure with an N-channel model is proposed in this article. This study also shows that modifying the scatter radius and the waveguide width can significantly improve the performance of the original structure, which can solve the mode mismatch problem for output waveguide. Here, an example of a 16-channel photonic crystal ring resonator is provided; wavelength spacing of 1.6 nm and a high quality factor Q of 6,000 were achieved. The optical filter would be a potential key component in the application of dense wavelength division multiplexer devices.  相似文献   

19.
A theoretical model for crosstalk in multichannel wavelength division multiplexing communication systems due to cross phase saturation in semiconductor optical amplifier structure is developed. This theoretical model is used to analyze the impact of the cross phase noise on the performance of semiconductor optical amplifiers in saturation region for WDM communication system by using differential phase shift modulation format. It is shown that by increasing the carrier life time, width and thickness while reducing the confinement factor, differential gain and bias current in the SOA structure mitigates the cross talk due to cross phase saturation. The impact of penalty and cross phase noise imposed on multichannel WDM links have been investigated for different parameters of the SOA with the variation in transmission distance. With the slight increase in differential gain of 200.2 × 10−18 cm2 and confinement factor 0.41, the maximum transmission distance observed is 5220 km with good quality and nil power penalty for 10 × 40 Gb/s soliton RZ-DPSK WDM signals for the first time.  相似文献   

20.
In this paper, a novel 1 × 4 optical multiplexer (OMUX) based on the two dimensional photonic crystal embed cascaded Mach–Zehnder interferometer (MZI) employing self-collimation effect was proposed and its performance were numerically demonstrated. The 1 × 4 OMUX consists of four beam splitters and five mirrors. Light propagates in the OMUX employing self-collimation effect. The theoretical transmission spectra at different output ports of OMUX were analyzed with the theory of light interference. Then they were investigated with the finite-difference time-domain (FDTD) simulation technique. The simulation results indicate the cascaded Mach–Zehnder interferometer can work as a 1 × 4 optical multiplexer by selecting path length in the structure properly. For the drop wavelength 1550 nm, the free spectral range of the OMUX is about 24 nm, which almost covers the whole optical communication C-band window. The presented device that has no only a compact size but also a high output efficiency, may have practical applications in photonic integrated circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号