共查询到20条相似文献,搜索用时 15 毫秒
1.
The curing kinetics of films produced from compositions based on UV-curable oligourethaneacrylates is investigated using, as a source of radiation, an individual spectral line separated by a monochromator from the radiation of a DRT-400 mercury tubular lamp. It has been established that in the region of spectral sensitivity of the composition, the curing time of the film is inversely proportional to the intensity of volumetric absorption of the radiation-source photons by the initiator at the lower surface of the film under study. Individual contributions of some of the lines to the process of composition curing by using the integral spectrum of the radiation source have been evaluated. The spectral-kinetic results obtained were confirmed when using the compositions under study as protective coatings of optical quartz fibers.Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 71, No. 6, pp. 836–840, November–December, 2004.This revised version was published online in April 2005 with a corrected cover date. 相似文献
2.
Coir/silk fiber-reinforced polypropylene (PP) based unidirectional composites (40 wt.%) were manufactured by compression molding. Coir/silk fibers and PP sheets were treated with ultraviolet radiation at different intensities and then composites were fabricated. It was found that mechanical properties of irradiated silk/irradiated PP composites were found to increase significantly compared to the untreated ones and even higher than that of irradiated coir/irradiated PP composites. Soil degradation tests indicated that irradiated coir/irradiated PP composites significantly lost much of its mechanical properties, but irradiated silk/irradiated PP composites retained their strength of its original integrity. Scanning electron microscopy and water uptake of both types of composites were also investigated. 相似文献
3.
The effect of oxygen-plasma treatment on Kevlar fibers and the properties of Kevlar fibers/bismaleimide composites 总被引:2,自引:0,他引:2
The effect of oxygen-plasma treatment for Kevlar fibers on the interfacial adhesion and typical macro-properties of Kevlar fiber/bismaleimide composites was intensively studied. It is found that oxygen-plasma treatment significantly affects the interfacial adhesion by changing the chemistry and morphology of the surfaces of the fibers, and thus leading to improved interlaminar shear strength, water resistance and dielectric properties of the composites. However, the improvement is closely related to the treatment power and time. The best condition for treating Kevlar fiber is 70 W for 5 min. Oxygen-plasma treatment provides an effective technique for overcoming the poor interfacial adhesion of Kevlar fiber based composites, and thus showing great potential in fabricating high performance copper clad laminates. 相似文献
4.
Cadmium selenide (CdSe) thin films were deposited on a glass substrate using the thermal evaporation method at room temperature. The changes in the optical properties (optical band gap and absorption coefficient) after irradiation by TEA N2 laser at different energies were measured in the wavelength range 190–800 nm using a spectrophotometer. It was found that the optical band gap is decreased after irradiating the thin films. The samples were characterized using X-ray diffraction (XRD), and the grain size of the CdSe thin film was calculated from XRD data, which was found to be 41.47 nm as-deposited. It was also found that grain size increases with laser exposure. The samples were characterized using a scanning electron microscope and it was found that big clusters were formed after irradiation by TEA N2 laser. 相似文献
5.
V.N. Wijayathunga R.S. Blackburn E.L.V. Lewis V. Cheung 《Optics & Laser Technology》2007,39(7):1301-1309
Laser irradiation has been previously investigated for achieving uniform heating of polyethylene terephthalate (PET) fibres in the hot-drawing stage of the production process, so as to obtain better fibre mechanical properties. The optical properties and dye uptake of PET fibres also depend on the polymer chain orientation and crystallinity within the fibre structure. This paper reports an investigation of a concept whereby laser irradiation and interferometry could be used to modify and trace a small change in the optical properties of a PET monofilament fibre, but the corresponding change in the dye uptake would not be detected visually. A copper vapour laser (550-580 nm wavelengths) was used to expose consecutive 4 mm lengths along a running length of monofilament to 39.8 W cm−2, at a pulse rate of 9.89 kHz in order to modify, in a controlled way, the polymer crystallinity and orientation. A 3D finite element simulation, based on uncoupled heat-transfer analysis, indicated that rapid heating and cooling could be obtained with the laser to give the small changes required. Irradiated and untreated samples were analysed by interferometry and a 0.16% change was detected in the birefringence profiles, corresponding to a small reduction in the degree of orientation and crystallinity of the irradiated samples. Density measurements and wide-angle X-ray scattering (WAXS) analysis confirmed the change in crystallinity. Tests conducted for dye adsorption and tensile strength showed a small increase in the former and only a very small decrease in the latter. It was concluded that these changes in property provide the opportunity for a laser-irradiated PET monofilament fibre to be used as a subtle tracer element in brand labels for textile garments as an anti-counterfeit measure. 相似文献
6.
介绍了光纤的损耗机制和γ射线对光纤的辐射效应,设计了针对脉冲γ射线作用于光纤而产生辐射感生损耗的实验测量系统。利用平均光子能量为0.3 MeV、脉冲宽度25 ns、剂量率2.03×107 Gy·s-1,和平均光子能量为1.0 MeV、脉冲宽度25 ns、剂量率5.32×109 Gy·s-1的2种脉冲γ射线分别作用于多模和单模光纤,分别采用波长为405,660,850,1 310和1 550 nm的激光光纤传输系统对辐射感生损耗进行了测量。获得了光纤辐射感生损耗和辐射剂量的关系,并对实验结果进行分析。从实验结果可以看出:在近红外到可见光范围内,脉冲γ射线对光纤作用产生的辐射感生损耗随探测波长减小而增大;在0.1~3.5 Gy剂量范围内,多模光纤辐射感生损耗和辐射剂量呈线性关系。分析辐射对光纤的作用机制和实验结果后得出:光纤基质原子的电子能级对传输光子的共振吸收而造成吸收损耗增加;光纤折射率分布的改变从而导致波导损耗增加。 相似文献
7.
Investigations are performed on thermal, optical and electrical response of UV laser-irradiated platinum (Pt). 4N pure, annealed and fine polished samples are exposed to the KrF Excimer laser (248 nm, 20 ns, 50 mJ) under vacuum ~10?6 torr at different laser fluences (0.5–2.5 J/cm2). Space-resolved plasma plume dynamics is studied by analyzing the captured plume images with the help of a computer controlled image-grabbing system. The irradiated targets are characterized for surface morphology, structural, optical and electrical investigations using the diagnostics; scanning electron microscopy, X-ray diffraction, rotating compensator auto-aligned ellipsometer and four-point probe, respectively. The value of maximum intensity emitted by Pt plasma plume is 250 grey scales. Surfaces of the target metals are modified by craters, moltens and redeposited material. Laser-induced periodic surface structures are produced at low laser fluence. Irradiation of Pt causes changes in diffracted X-rays intensity and grain sizes, dislocation in line densities and strain in the target materials. Considerable changes occur in optical parameters as well. A decrease in electrical conductivity of the irradiated targets also takes place in an exponential way with the change in laser fluence. 相似文献
8.
采用水热法在普通载玻片上热解醋酸锌生成的ZnO种子层上制备ZnO纳米棒, 采用 X射线衍射仪、扫描电镜、分光光度计等测试手段详细研究了醋酸锌热解温度对 ZnO纳米棒的结构和光学性质的影响. 结果表明: 纳米棒的结晶质量、端面尺寸、宏观应力和透射率与醋酸锌热解温度有密切关系. 随着热解温度的增加, ZnO纳米棒具有的c轴择优取向性先增强后减弱, 拉应力先减小后增大, 可见光区的平均透射率先增大后减小. 热解温度为350 ℃时, ZnO纳米棒c轴择优取向性最强, 拉应力最小, 平均透射率最大. 端面尺寸诱导的表面散射 是影响ZnO纳米棒可见光区平均透射率的主要机制.
关键词:
醋酸锌
水热法
ZnO纳米棒 相似文献
9.
郭鑫 《原子与分子物理学报》2023,40(4):042006-109
二维硅烯的商业用途通常受到其零带隙的抑制,限制了其在纳米电子和光电器件中的应用.利用基于密度泛函理论的第一性原理计算,单层硅烯的带隙通过卤原子的化学官能化被成功打开了,并综合分析了卤化对单层硅烯的结构,电子和光学性质的影响.研究结果表明卤化使结构变得扭曲,但保持了良好的稳定性.通过HSE06泛函,全功能化赋予硅烯1.390至2.123 eV的直接带隙.键合机理分析表明,卤原子与主体硅原子之间的键合主要是离子键.最后,光学性质计算表明,I-Si-I单层在光子频率为10.9 eV时达到最大光吸收,吸收值为122000 cm-1,使其成为设计新型纳米电子和光电器件的有希望的候选材料. 相似文献
10.
Bulk single crystals of pure and xylenol orange (XO) admixtured l-arginine phosphate (LAP) were grown by slow cooling technique. The cell parameters and crystallinity of pure and dye admixtured LAP crystals were confirmed by single crystal and powder X-ray diffraction analyses. HRXRD analysis reveals the presence of xylenol orange dye in interstitial site of LAP crystal lattice and it confirms the crystalline perfection of grown crystals. The functional groups of grown crystals were confirmed by FTIR spectral analysis. UV–vis transmission studies show the characteristic absorption of xylenol orange admixtured LAP crystal. Vickers’ microhardness and laser damage threshold studies were carried out on these crystals. Kurtz and Perry powder test was conducted to measure the second harmonic generation efficiency of pure and dye admixtured LAP crystals. 相似文献
11.
MgO-reduced graphene oxide nanocomposites (NCs) were synthesized by a simple two-step chemical method. The microstructure, surface morphology, and composition of the prepared samples have been studied. X-ray diffractometer (XRD) analysis confirmed the crystalline cubic MgO nanoparticle and rGO sheets. Scanning electron microscope (SEM) showed the spherical MgO nanoparticles well dispersed over the graphene sheets. UV–visible spectroscopy analysis demonstrated that a red shift in the wavelength dependent absorbance curve. The band gap of the samples was found to be decreased with the increase of rGO content. The dielectric studies have been examined in the frequency range 500 Hz−5 MHz and found significant improvement in the dielectric constant, dielectric loss, and electric properties due to rGO addition.This is mainly attributed to the strong interfacial polarization (Maxwell–Wagner polarization) between MgO and rGO sheets. Further, the modulation of charge carrier density with rGO additions help to enhance the electrical conductivity of NCs and thus, encouraging to have wider application in electronic and energy technologies. 相似文献
12.
Fe2O3 thin films were deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) method onto glass substrates at different cycle numbers to investigate structural, linear and nonlinear optical properties. X-Ray Diffraction (XRD) analysis revealed that the Fe2O3 thin films have a non-crystalline nature. The morphological properties of the films were investigated by Field Emission-Scanning Electron Microscopy (FE-SEM) and the results show that the films’ surfaces are porous. The linear and nonlinear optical parameters were evaluated and analyzed by using transmittance and absorbance measurements. For these measurements, UV–Vis spectroscopy at room temperature was used. The refractive index values were calculated in the range of 1.45–3.23 for visible region (400–700 nm). Obtained results reveal that direct optical band gap changed between 2.62 and 2.68 eV and indirect optical band gap changed between 1.67 and 1.77 eV. Additionally, optical electronegativity, optical dielectric constants, surface and volume energy loss functions, nonlinear refractive index, linear optical susceptibility, third-order nonlinear optical susceptibility, optical and electrical conductivity, and loss tangent values were calculated and discussed in detail. It was found that each parameter studied is dependent on the cycle numbers. Also, it can be stated that Fe2O3 thin films are promising candidate for solar cells and optoelectronic device technology. 相似文献
13.
The structural, electronic, and optical properties of rutile-, CaC12-, and PdF2-ZnF2 are calculated by the plane-wave pseudopotential method within the density functional theory. The calculated equilibrium lattice constants are in reasonable agreement with the available experimental and other calculated results. The band structures show that the rutile-, CaCl2-, and PdF2-ZnF2 are all direct band insulator. The band gaps are 3.63, 3.62, and 3.36 eV, respectively. The contribution of the different bands was analyzed by the density of states. The Mulliken population analysis is performed. A mixture of covalent and weak ionic chemical bonding exists in ZnF2. Furthermore, in order to understand the optical properties of ZnF2, the dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, and optical reflectivity are also performed in the energy range from 0 to 30 eV. It is found that the main absorption parts locate in the UV region for ZnF2. This is the first quantitative theoretical prediction of the electronic and optical properties of ZnF2 compound, and it still awaits experimental confirmation. 相似文献
14.
在30keV的电子、质子单独辐照及电子与太阳电磁射线综合辐照作用下,对Teflon FEP/Al第二表面镜光学性能的演化进行了研究。试验结果表明,在相同辐照通量与能量乘积的情况下,电子与质子单独辐照后Teflon FEP/Al涂层材料的太阳吸收比变化相同,故可用电子与太阳电磁射线综合辐照简化地面模拟加速试验。Teflon FEP/Al光学性能退化动力学曲线可描述成加速系数与辐照时间乘积(称为当量辐照时间)的指数函数形式。在当量辐照时间相同的情况下,太阳吸收比的变化与加速系数无关。 相似文献
15.
在30keV的电子、质子单独辐照及电子与太阳电磁射线综合辐照作用下,对Teflon FEP/Al第二表面镜光学性能的演化进行了研究。试验结果表明,在相同辐照通量与能量乘积的情况下,电子与质子单独辐照后Teflon FEP/Al涂层材料的太阳吸收比变化相同,故可用电子与太阳电磁射线综合辐照简化地面模拟加速试验。Teflon FEP/Al光学性能退化动力学曲线可描述成加速系数与辐照时间乘积(称为当量辐照时间)的指数函数形式。在当量辐照时间相同的情况下,太阳吸收比的变化与加速系数无关。 相似文献
16.
Conductive polypyrrole was synthesized with hydrogen peroxide (H2O2) as the oxidant. To promote the polymerization of pyrrole, UV radiation was employed. The effects of UV radiation on the preparation of polypyrrole were investigated. The polymerization of pyrrole was conducted with the H2O2 concentration in the range of 0.12–0.96?M and the H2SO4 concentration in the range of 6.8×10?4–0.19?M. The structure characterization indicated that the product polypyrrole was overoxidized partly depending on the concentrations of H2SO4 and H2O2. The increase in H2O2 concentration led to a slight increase in the oxidation and overoxidation of polypyrrole, simultaneously. However, the increase in H2SO4 concentration effectively suppressed the overoxidation of polypyrrole. The morphology, conductivity and thermal stability of the products were also characterized. 相似文献
17.
Molybdenum oxide films (MoO3) were deposited on glass and crystalline silicon substrates by sputtering of molybdenum target under various oxygen partial pressures in the range 8 × 10−5–8 × 10−4 mbar and at a fixed substrate temperature of 473 K employing dc magnetron sputtering technique. The influence of oxygen partial pressure on the composition stoichiometry, chemical binding configuration, crystallographic structure and electrical and optical properties was systematically studied. X-ray photoelectron spectra of the films formed at 8 × 10−5 mbar showed the presence of Mo6+ and Mo5+ oxidation states of MoO3 and MoO3−x. The films deposited at oxygen partial pressure of 2 × 10−4 mbar showed Mo6+ oxidation state indicating the films were nearly stoichiometric. It was also confirmed by the Fourier transform infrared spectroscopic studies. X-ray diffraction studies revealed that the films formed at oxygen partial pressure of 2 × 10−4 mbar showed the presence of (0 k 0) reflections indicated the layered structure of α-phase MoO3. The electrical conductivity of the films decreased from 3.6 × 10−5 to 1.6 × 10−6 Ω−1 cm−1, the optical band gap of the films increased from 2.93 to 3.26 eV and the refractive index increased from 2.02 to 2.13 with the increase of oxygen partial pressure from 8 × 10−5 to 8 × 10−4 mbar, respectively. 相似文献
18.
Rosari Saleh Suhendro Purbo PrakosoAdel Fishli 《Journal of magnetism and magnetic materials》2012,324(5):665-670
We report the results of an investigation of Fe-doped nanocrystalline ZnO particles synthesized using the co-precipitation method with doping concentrations from 5 up to 31 at%. To understand how the dopant influenced the structural, magnetic and optical properties of nanocrystalline ZnO particles, X-ray diffraction, energy dispersive X-ray spectroscopy, infrared absorption spectroscopy, UV-vis spectroscopy, electron spin resonance spectroscopy (ESR) and vibrating sample magnetometer were employed. From the analysis of X-ray diffraction, our Fe-doped nanocrystalline ZnO particles are identified as having the wurtzite crystal structure and the unit cell volume increases with increasing doping concentrations. However, impurity phases are observed for Fe contents higher than 21 at%. Sample structures were further studied by infrared spectra, from which a broad and strong absorption band in the range of 400-700 cm−1 and -OH stretching vibrational mode at approximately 3400 cm−1 were observed. Ultraviolet-visible measurements showed a decrease in the energy gap with increasing Fe content, probably due to an increase in the lattice parameters. Magnetic measurements showed a ferromagnetic behavior for all samples. ESR results indicate the presence of Fe in both valence states Fe2+ and Fe3+. 相似文献
19.
dc reactive magnetron sputtering technique was employed for deposition of tantalum oxide films on quartz and silicon substrates by sputtering of pure tantalum target in the presence of oxygen and argon gases under various substrate temperatures in the range 303-973 K. The variation of cathode potential with the oxygen partial pressure was systematically studied. The influence of substrate temperature on the chemical binding configuration, crystal structure and optical properties was investigated. X-ray photoelectron spectroscopic studies indicated that the films formed at oxygen partial pressures ≥1 × 10−4 mbar were stoichiometric. The Fourier transform infrared spectroscopic studies revealed that the films formed up to substrate temperatures <673 K showed a broad absorption band at 750-1000 cm−1 and a sharp band at 630 cm−1 indicated the presence of amorphous phase while at higher substrate temperatures the appearance of bands at about 810 and 510 cm−1 revealed the polycrystalline nature. The effect of substrate temperature on the electrical characteristics of Al/Ta2O5/Si structure was investigated. The dielectric constant values were in the range 17-29 in the substrate temperature range of 303-973 K. The current-voltage characteristics showed modified Poole-Frenkel conduction mechanism with a tendency for reduction of the compensation level. The optical band gap of the films decreased from 4.44 to 4.25 eV and the refractive index increased from 1.89 to 2.25 with the increase of substrate temperature from 303 to 973 K. 相似文献
20.
Theoretical investigation of structural and optical properties of semi-fluorinated bilayer graphene 下载免费PDF全文
We have studied the structural and optical properties of semi-fluorinated bilayer graphene using density functional theory. When the interlayer distance is 1.62 , the two graphene layers in AA stacking can form strong chemical bonds.Under an in-plane stress of 6.8 GPa, this semi-fluorinated bilayer graphene becomes the energy minimum. Our calculations indicate that the semi-fluorinated bilayer graphene with the AA stacking sequence and rectangular fluorinated configuration is a nonmagnetic semiconductor(direct gap of 3.46 e V). The electronic behavior at the vicinity of the Fermi level is mainly contributed by the p electrons of carbon atoms forming C=C double bonds. We compare the optical properties of the semifluorinated bilayer graphene with those of bilayer graphene stacked in the AA sequence and find that the semi-fluorinated bilayer graphene is anisotropic for the polarization vector on the basal plane of graphene and a red shift occurs in the [010]polarization, which makes the peak at the low-frequency region located within visible light. This investigation is useful to design polarization-dependence optoelectronic devices. 相似文献