首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
The structural feature and the electronic properties of the newly synthesized compound VO2 (D) are theoretically studied. Our calculations reveal that all of the V ions in VO2 (D) form two types of chains. One of the chains contributes to the electronic states near the Fermi level, but the other one almost does not yet. Such discrepancy is attributed to the different strength of the VO bonds belonging to the different chains. Furthermore, it is found that one type of the VV chains characters the antiferromagnetic feature, whereas the other one is almost non-magnetic. So, the compound VO2 (D) is of one-dimensional antiferromagnetic ordering. In addition, we propose that the structural transition from VO2 (D) to the rutile-type VO2 (R) is driven by three vibrational modes. The transition temperature is estimated to be about 600 K, being consistent with experiment.  相似文献   

3.
Low dielectric constant SiOC(H) films are deposited on p-type Si(100) substrates by plasma enhanced chemical vapor deposition (PECVD) using methyltriethoxysilane (MTES, C7H18O3Si) and oxygen gas as precursors. The SiOC(H) films are deposited at room temperature, 100, 200, 300 and 400 °C and then annealed at 100, 200, 300 and 400 °C temperatures for 30 min in vacuum. The influence of deposition temperature and annealing on SiOC(H) films are investigated. Film thickness and refractive index are measured by field emission scanning electron microscopy and ellipsometry, respectively. Chemical bonding characteristics of as-deposited and annealed films are investigated by Fourier transform infrared (FTIR) spectroscopy in the absorbance mode. As more carbon atoms are incorporated into the SiOC(H) films, both film density and refractive index are decreased due to nano pore structure of the film. In the SiOC(H) film, CH3 group as an end group is introduced into OSiO network, thereby reducing the density to decrease the dielectric constant thereof. The dielectric constant of SiOC(H) film is evaluated by C-V measurements using metal-insulator-semiconductor (MIS), Al/SiOC(H)/p-Si structure and it is found to be as low as 2.2 for annealed samples deposited at 400 °C.  相似文献   

4.
Calcination of magnesium hydroxide, which was prepared from natural bischofite MgCl2·6H2O, leading to dehydration 2(MgOH) → MgOMg + H2O, is accompanied by transition of phase not only to MgO but also to MgOx at x < 1 (assigned to Mg4O3) at moderate temperatures. At higher temperatures, MgOx is completely transformed into MgO. Magnesium hydroxide and oxide heated at different temperatures were studied using the TEM, XRD, IR, PCS, TG-DTA, nitrogen and argon adsorption methods. The electronic structure of MgO and Mg4O3 was studied using the ab initio quantum chemical method with periodic conditions. According to TEM images, the morphology of particles changing from Mg(OH)2 laminae to aggregates of interpenetrated MgO cubelets and foils depend strongly on the calcination temperature. Significant changes in surface area are observed mainly at 325-470 °C on desorption of a major portion of eliminated water corresponding to 28.4 wt.% at its total amount of 30.9 wt.%. Pore size distribution (PSD) is sensitive to treatment conditions and the main PSD peaks shift towards larger pore size with elevating temperature. The characteristics of the surface hydroxyls as well as of the bulk MgO bonds depend on heating conditions, as noticeable changes are observed in the XRD patterns and the IR spectra of the samples undergoing the mentioned transformation of phase Mg(OH)2 → MgOx → MgO.  相似文献   

5.
6.
Geometries and stabilities of the linear aluminum-bearing carbon chains AlC2nH (n = 1-5) in their ground states have been explored by the DFT-B3LYP and RCCSD(T) methods. Structures of the X1Σ+ and 11Π electronic states have also been optimized by the CASSCF approach. The studies indicate that these species have single-triple bond alternate pattern, AlCCCC?CCH, and the electronic excitation from X1Σ+ to 11Π leads to the shortening of the AlC bonds. The vertical excitation energies of the 11Π ← X1Σ+ and 21Π ← X1Σ+ transitions for AlC2nH (n = 1-5) have been investigated by the CASPT2, EOM-CCSD, and TD-B3LYP levels of theory with the cc-pVTZ basis set, respectively. CASPT2-predicted 11Π ← X1Σ+ transition energies are 3.57, 3.44, 3.33, 3.26, and 3.21 eV, respectively. For AlC2H, our estimate agrees very well with the experimental value of 3.57 eV. In addition, the AlC bond dissociation energies and the exponential-decay curves for these vertical excitation energies are also discussed.  相似文献   

7.
Fabrication of PF-codoped TiO2 nanotubes was carried out using a one-step electrochemical anodization process by tailoring the composition of the electrolyte with the aim of PF-codoping to extend the optical absorption of TiO2 to the visible-light region. The as-prepared PF-codoped TiO2 nanotubes were characterized by SEM, XPS, and UV-vis diffuse reflectance absorption spectra (DRS). The results showed that the tube diameter of the nanotubes was approximately 100 nm and the tube length was approximately 510 nm. The phosphorus and fluorine were successfully doped into TiO2 nanotubes, as evidenced by XPS. Moreover, the PF-codoped samples displayed remarkably strong visible-light response.  相似文献   

8.
For further prolonging the serve life of silicone rubber (SIR) for outdoor insulation and increasing its resistance of pollution flashover, surface modifications of SIR were carried out via CF4 capacitively coupled plasma at radio frequency (RF) power of 60, 100 and 200 W for a treatment time up to 20 min under CF4 flow rate of 20 sccm. Static contact angle measurement was employed to estimate the change of hydrophobicity of the modified SIR. The variation of the surface functional groups of the modified SIR was observed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrum and X-ray photoelectron spectroscopy (XPS). The surface topography was observed by atom force microscopy (AFM). The results indicate that the static contact angle of SIR surface is improved from 100.7° to 150.2° via the CF4 plasma modification, and the super-hydrophobic surface of modified SIR, which corresponds to a static contact angle of 150.2°, appears at RF power of 200 W for a 5-min treatment time. According to the results, it is suggested that the formation of super-hydrophobic surface is ascribed to the co-action of the increase of roughness created by the ablation reaction of CF4 plasma and the formation of [SiFx(CH3)2−xO]n (x = 1, 2) structure produced by the direct attachment of F atoms to Si.  相似文献   

9.
Poly(ethylene terephthalate) (PET) films were treated with CF4 plasma immersion. The samples were processed at different RF powers and treatment time. The surface modification of PET films was evaluated by water contact angle (CA), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). Decrease in contact angle of both sides of PET films was observed under mild treatment conditions. However, as raising treatment power and/or time, the change in contact angle between the two sides of PET films was different. The relatively hydrophobic and hydrophilic surfaces were being in situ formed on the two sides of PET films, respectively. And the extreme values of water contact angle reached 108.63 and 7.56°, respectively. XPS analyses revealed that there was a substantial incorporation of fluorine and/or oxygen atoms in both side surfaces. The relative chemical composition of the C (ls) spectra's showed the incorporation of non-polar fluorine-based functionalities (i.e. CFCFn, CF2 or CF3 groups) and polar oxygen-based functionalities (i.e. COOH or OH groups) in the surfaces. Correlation between the plasma parameters and the surface modification of PET films is also discussed.  相似文献   

10.
Using first-principles calculations, we study the electronic transport properties in Au(C20)2Au molecular junctions with different contact interface configurations: point contact and bond contact. We observe that the transmission through the bond contact is considerably higher than that of point contact. Furthermore, the I-V characteristics are rather different. For the bond contact, we get a metallic behavior followed by a varistor-type behavior. While as for the point contact, the current increases very slowly in a nonlinear way and is one order of magnitude smaller than that of bond contact. We attribute these obvious differences to the distinct contact configurations.  相似文献   

11.
The quadratic, cubic and semi-diagonal quartic force field of nitric acid has been calculated at the CCSD(T) level of theory employing a basis set of triple-ζ quality. A semi-experimental equilibrium structure has been derived from experimental ground state rotational constants and rovibrational interaction parameters calculated from the ab initio force field. It is found that the A and B semi-experimental equilibrium rotational constants of the 18O isotopologues (for which the rotation of principal axes is large) cannot be accurately reproduced. This problem is discussed and a remedy is proposed. Finally, the semi-experimental structure is in agreement with the ab initio structure calculated at the CCSD(T) level of theory using a basis set of at least quadruple-ζ quality and a core correlation correction, except for the long NO single bond for which the CCSD(T) value is too short due to inadequate treatment of electron correlation. The empirical structures are also determined and their accuracy is discussed. The best equilibrium structure is: re(NOsyn) = 1.209(1) Å, re(NOanti) = 1.194(1) Å, re(NO) = 1.397(1) Å, re(OH) = 0.968(1) Å, (ONOsyn) = 115.8(1)°, (ONOanti) = 114.2(1)° and (NOH) = 102.2(1)°.  相似文献   

12.
In order to improve the photocatalytic activity, N-doped titanium oxide (TiO2) films were obtained by thermal oxidation of TiN films, which were prepared on Ti substrates by ion beam assisted deposition (IBAD). The dominating rutile TiO2 phase was found in films after thermal oxidation. According to the results of X-ray photoelectron spectroscopy (XPS), the residual N atoms occupied O-atom sites in TiO2 lattice to form TiON bonds. UV-vis spectra revealed the N-doped TiO2 film had a red shift of absorption edge. The maximum red shift was assigned to the sample annealed at 750 °C, with an onset wavelength at 600 nm. The onset wavelength corresponded to the photon energy of 2.05 eV, which was nearly 1.0 eV below the band gap of pure rutile TiO2. The effect of nitrogen was responsible for the enhancement of photoactivity of N-doped TiO2 films in the range of visible light.  相似文献   

13.
14.
15.
This work investigates the vibrational spectroscopy of a series of organic acids, CH3(CH2)nCOOH (n = 1-5), previously unobserved in the IR and near-IR (2000-15 000 cm−1). The work obtains frequencies and relative intensities for all OH and CH stretching transitions. Comparison of the frequencies and intensities of CH and OH stretching transitions reveal interesting trends in acid chain length that are discussed. Literature values for acetic acid (CH3COOH) and formic acid (HCOOH) are used to gain a broader understanding for the spectroscopy of the organic acids CH3(CH2)nCOOH. The observation of several combination bands involving the CH and OH stretching vibrations and possible rotational isomer and hot band transitions are reported.  相似文献   

16.
M. Teo 《Applied Surface Science》2005,252(5):1293-1304
A remote microwave-generated H2 plasma and heating to 250 °C were separately used to modify high-purity oxidized aluminum surfaces and to assess whether these treatments can help enhance adhesion with bis-1,2-(triethoxysilyl)ethane (BTSE) coatings. Different initial oxide surfaces were considered, corresponding to the native oxide and to surfaces formed by the Forest Products Laboratory (FPL) treatment applied for either 15 or 60 min. BTSE is applied from solution at pH 4, and competing processes of etching, protonation (to form OH groups) and coupling (to form AlOSi interfacial bonds) occur at the solid-liquid interface. Scanning electron microscopy (SEM) was used to determine how the topographies of the modified Al surfaces changed with the different pre-treatments and with exposure to a buffer solution of pH 4. Secondary-ion mass spectrometry (SIMS) was used to determine the direct amount of AlOSi interfacial bonds by measuring the ratio of peak intensities 71-70 amu, while X-ray photoelectron spectroscopy (XPS) was used to determine the overall strength of the silane coating adhesion by measuring the Si 2p signals before and after application of an ultrasonic rinse to the coated sample. Measured Al 2p and O 1s spectra helped assess how the different pre-treatments modified the various Al oxidized surfaces prior to BTSE coating. Pre-treated samples that showed increased AlOSi bonding after BTSE coating corresponded to surfaces, which did not show evidence of significant etching after exposure to a pH 4 environment. This suggests that such surfaces are more receptive to the coupling reaction during exposure to the BTSE coating solution. These surfaces include all H2 plasma-treated samples, the heated native oxide and the sample that only received the 15 min FPL treatment. In contrast, other surfaces that show evidence of etching in pH 4 environments are samples that received lower amounts of AlOSi interfacial bonding. Overall, heating improved the BTSE adhesive bonding for the native Al oxide, while H2 plasma treatment improved the BTSE bonding for surfaces that had initially been FPL-treated for 15 and 60 min.  相似文献   

17.
18.
19.
X-ray photoelectron spectroscopy (XPS) was used to characterise the effects of low energy (<2 eV) argon ion plasma surface modification of TiO2 thin films deposited by radio frequency (RF) magnetron sputter system. The low energy argon ion plasma surface modification of TiO2 in a two-stage hybrid system had increased the proportion of surface states of TiO2 as Ti3+. The proportion of carbon atoms as alcohol/ether (COX) was decreased with increase the RF power and carbon atoms as carbonyl (CO) functionality had increased for low RF power treatment. The proportion of C(O)OX functionality at the surface was decreased at low power and further increase in power has showed an increase in its relive proportion at the surface. The growth of S180 cells was observed and it seems that cells are uniformly spreads on tissue culture polystyrene surface and untreated TiO2 surfaces whereas small-localised cell free area can be seen on plasma treated TiO2 surfaces which may be due to decrease in C(O)OX, increase in CO and active sites at the surface. A relatively large variation in the surface functionalities with no change in the surface roughness was achieved by different RF plasma treatments of TiO2 surface whereas no significant change in S180 cell growth with different plasma treatments. This may be because cell growth on TiO2 was mainly influenced by nano-surface characteristics of oxide films rather than surface chemistry.  相似文献   

20.
Ying Wu 《Applied Surface Science》2006,252(14):5220-5226
Nanosized TiNiO catalysts prepared by a modified sol-gel method have been investigated in the oxidative dehydrogenation of propane (ODP) to propene. At 300 °C the yield to propene of 12.1% was obtained on 9.1 wt.% TiNiO catalyst with the selectivity of 43%. The continued variety of lattice parameter and variation of chemical value of nickel and titanium ion on the surface indicates that there are strong interactions of TiO2 and NiO. The decreased low temperature oxygen desorption and the weaker reducibility seems to be responsible for the decreased activity and enhanced selectivity of propane oxidative dehydrogenation over TiNiO catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号