首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we investigate the phase properties of light reflected from one-dimensional omnidirectional reflection photonic crystal. We observe that the phase changes drastically at large incident angles. This asymmetrical phase change should be considered at oblique incidence, and various phase compensators and retarders can be designed by this nonlinear curved surface of phase shift. Furthermore, for the coupled defect 1D PC, the phase change depends mainly on the top of the sharp peak of the weak undulation within the rectangular defect band, because the top of the peak of the undulation is very sharp, i.e. large phase change look like within almost a single frequency. This drastic phase change can be used to design phase controllers.  相似文献   

2.
用时域有限差分法研究了电磁波在等离子体光子晶体中的传播特性。数值模拟中使用完全匹配层吸收边界条件,计算了电磁波通过等离子体光子晶体的反射和透射系数。讨论了等离子体密度、等离子体温度、介电常数比和引入缺陷层对等离子体光子晶体光子带隙的影响。  相似文献   

3.
We designed a narrow bandpass terahertz wave filter using photonic crystals with a line defect. An inserted linear defect in one-dimensional photonic crystal structures for a channeled filtering in the terahertz range are studied and designed theoretically. By using transfer matrix method, we examined the transmittance spectra for the proposed terahertz wave filter has a 3 dB transmission loss bandwidth of 20 MHz ranging from 0.29998 THz to 0.30001 THz. The simulated results show that a very narrow transmission band and high transmission (higher than 99.99%) centered at λ0, and very sharp edges can be achieved.  相似文献   

4.
We describe the fabrication processes of silicon-based two-dimensional photonic crystals (2D-PCs) with a photonic band gap in the near-IR range. The procedures involve electron beam lithography followed by an anisotropic etching step of hydrogenated amorphous silicon thin films deposited by plasma enhanced chemical vapor deposition. Micrometric and submicrometric arrays of cylindrical holes are transferred using a poly-methylmethacrylate resist layer as a mask. A careful comparison between standard parallel plate reactive ion etching and inductively coupled plasma etching techniques is performed, aimed at obtaining periodic structures with high aspect ratio and good profile sharpness.  相似文献   

5.
通过增加外磁场来调控等离子体光子晶体的光子带隙结构,采用时域有限差分算法分析了由本征层为磁化等离子体层和其他电介质材料层交替堆叠而成的磁化等离子体光子晶体的光子带隙结构,数值模拟中采用完全匹配层吸收边界条件以防止边界的反射。由于外磁场的法拉第磁光效应,使等离子体的介电常数随着外磁场的变化而改变。数值结果表明,等离子体光子晶体的带隙特性在一定的频率范围相应地得到调节,实现了频率低于等离子体频率的电磁波也能在等离子体中传播。  相似文献   

6.
We investigate the potential of plasmonic resonance in metal nanocomposite materials for the design of photonic crystal all optical switches by numerical methods. We study the absorption effect of the plasmonic resonance on the Fano resonances of one dimensional photonic crystal slabs covered by a metal nanocomposite layer. It is shown that the absorption reduces the contrast of the Fano resonances. However, for adequate metal nanoparticle concentrations it is possible to achieve both sufficiently sharp Fano resonance and strong Kerr nonlinearity, which provides a suitable condition for the design of high contrast and low threshold switches.  相似文献   

7.
通过增加外磁场来调控等离子体光子晶体的光子带隙结构,采用时域有限差分算法分析了由本征层为磁化等离子体层和其他电介质材料层交替堆叠而成的磁化等离子体光子晶体的光子带隙结构,数值模拟中采用完全匹配层吸收边界条件以防止边界的反射。由于外磁场的法拉第磁光效应,使等离子体的介电常数随着外磁场的变化而改变。数值结果表明,等离子体光子晶体的带隙特性在一定的频率范围相应地得到调节,实现了频率低于等离子体频率的电磁波也能在等离子体中传播。  相似文献   

8.
S. Prasad  A.K. Singh 《Optik》2010,121(16):1520-1528
We have theoretically studied the modal dispersion characteristics, group velocity, and effective group as well as phase index of refraction of ternary one-dimensional (1D) plasma photonic band gap (PBG) structure having periodic multilayers of three different materials in one unit cell. The dispersion characteristics related for such structure is derived by solving Maxwell wave equation based on principle of Kronig-Penny model. From the computed results we observe that the dispersion characteristics of such structure also show the frequency gap and cutoffs as found in (binary) one-dimensional plasma photonic crystal. The frequency gap is shown to become larger with the increase of plasma frequency as well as plasma width. It is seen that such structure provide additional degree of freedom to control dispersion characteristic, group velocity and effective index of refraction compared to conventional one-dimensional plasma photonic crystal.  相似文献   

9.
10.
11.
《Physics letters. A》2020,384(26):126678
We proposed an enhanced-performance relative humidity (%RH) nano-sensor based on MOF-801/TiO2 one-dimensional photonic crystals (1DPC). The maximum reflectance-peak wavelength of it shifted obviously in the range of 20%-90% under varying %RH levels, due to the highly moisture-sensitive MOF-801 film in the 1DPC structure. It was demonstrated that the linear spectrum sensitivity of the MOF-801/TiO2 %RH 1DPC sensor is exceeding 119 pm/%RH from 20%RH to 90% RH, and the sensitivity of reflection power variations exhibits 1.34 dB/%RH with the resolvable relative humidity variation less than 0.1%RH at 15°C. Meanwhile, the sensor shows a fast optical response time less than 100 ms with exceptional repeatability and reliability, which promises successful measurements of human respiration. Moreover, the sensor performance on the structure of 1DPC is investigated, representing a tradeoff between the sensing sensitivity and response time.  相似文献   

12.
为了在数值计算中保持哈密顿系统的辛几何结构不变,利用辛几何算法得到了在线性哈密顿系统中射线追踪方程的一般辛差分格式。通过具体算例,利用辛几何算法计算了波在非磁化等离子体中的传播轨迹,并且与传统Runge-Kutta-Fehlberg算法所得结果进行了比较。利用辛几何算法所得传播轨迹与解析解一致,其色散函数值的误差随时间线性增长,能在长时间内保持色散函数值在一个很小的误差范围内。利用传统的Runge-Kutta-Fehlberg算法所得传播轨迹与解析解不一致,其误差随时间做大幅振荡增加。计算结果表明辛几何算法在保持传播轨迹和色散函数值方面具有独特的优势。  相似文献   

13.
Two-dimensional photonic crystal lasers have been fabricated on III–V semiconductor slabs. Tuning of the spontaneous emission in micro and nanocavities has been achieved by accurate control of the slab thickness. Different structures, some of them of new application to photonic crystal lasers, have been fabricated like the Suzuki-phase or the coupled-cavity ring-like resonators. Laser emission has been obtained by pulsed optical pumping. Optical characterization of the lasing modes have been performed showing one or more laser peaks centred around 1.55 μm. Far field characterization of the emission pattern has been realized showing different patterns depending on the geometrical shape of the structures. These kinds of devices may be used as efficient nanolaser sources for optical communications or optical sensors.  相似文献   

14.
A novel three-port channel add/drop filter consisting of two waveguides and two cavities is proposed. One is used for a resonant tunneling-based channel add/drop operation from the bus waveguide to the add/drop waveguide, while the other is used to realize the wavelength-selective reflection feedback in the bus waveguide. By means of coupled mode theory in time, the conditions to achieve 100% add efficiency are derived thoroughly. Based on these theoretical analysis, the channel add filter and some other multi-channel filters are designed in two-dimensional photonic crystals (2D PCs) with square lattice of dielectric rods in air. The numerical results by using the finite-difference time-domain (FDTD) method demonstrate almost complete channel add/drop tunneling at resonance via the three-port systems.  相似文献   

15.
A genetic algorithm (GA) is used for the design of two-dimensional photonic crystals with large stop-bands. In this procedure, the unit cell of the crystal with square lattice is assumed to be composed of a number of Si round rods. And the key point to obtain maximum absolute band-gap is using the GA to optimize the radius and center position of each rod in unit cell. In the implementations of GA, the structure of each unit cell is represented by a binary string and the fitness (the absolute band-gap) for each unit cell is calculated by the plane-wave expansion (PWE) method. As numerical examples, we present several GA designs considering different number of round rods in the unit cell as well as the band-gap under the light line. The maximum absolute bandwidth of these optimized band-gaps is 0.1466(2πc/a).  相似文献   

16.
基于横向磁光效应磁化等离子体光子晶体的光子带隙特性   总被引:2,自引:0,他引:2  
通过外加与电磁波传播方向垂直的磁场来调控等离子体光子晶体的光子带隙结构。采用时域有限差分方法数值分析了由本征层为等离子体层和其他电介质材料层交替堆叠而成的磁化等离子体光子晶体的光子带隙结构和频谱特性。数值结果表明,光子晶体中等离子体的介电常数随着外磁场大小的变化而改变,从而使磁化等离子体光子晶体的带隙特性在一定的频率范围相应地得到调节。  相似文献   

17.
We propose a technique for the realization of three-dimensional metallodielectric photonic crystals based on fabricating polymeric structures using the interference lithography followed by the magnetron deposition of a gold nanolayer. The infrared reflectance spectra of the fabricated photonic crystals are studied. The spectrometry and finite-difference time-domain modeling data show that there is a photonic band gap centered at the wavelength approximately equal to the photonic crystal period.  相似文献   

18.
To inhibit the radiant infrared energy between 8 and 14 μm, which is the infrared atmospheric window, and decrease the echo power of detecting laser and radar, to achieve compatible stealth, a doping structural one-dimensional photonic crystal (1-D PC) with Ge, ZnSe and Si was fabricated; and then combine it with radar absorbing material (RAM) to make a compound. After that, the reflection spectra of this compound was tested, and the result shows a high average reflectance (89.5%) in 8–14 μm waveband, and a reflective valley (39.8%) in the wavelength of 10.6 μm, which is the wavelength of CO2 laser; and the reflectance in radar band shows that at high frequency, especially between 7.8 and 18 GHz, the radar power is strongly absorbed by this material and the reflected energy attenuate over 10 dB within the range from 11.1 GHz to 18.3 GHz, even 24.5 dB to the most in the frequency of 14.6 GHz.  相似文献   

19.
辛时域有限差分算法研究等离子体光子晶体透射系数   总被引:1,自引:0,他引:1  
相较于传统的时域有限差分算法,辛时域有限差分算法具有高准确度性和低色散性.传统的时域有限差分算法的计算准确度较低,数值色散误差较大,并且破坏了麦克斯韦方程的辛结构,从而导致其稳定性较差.然而辛时域有限差分算法可以克服这些缺点,从而保证了整个仿真计算的准确性和稳定性.本文基于辛时域有限差分算法,对等离子体光子晶体的带隙特性,透射系数等进行了研究,并与传统的时域有限差分算法进行了对比,验证了辛时域有限差分算法的优势和可行性.  相似文献   

20.
A detailed derivation of eigenvalue equation in two dimensional and three dimensional photonic crystals is given by the plane-wave expansion method. Some mathematical formulas such as the rotation of vector, the gradient of scalar, the divergence of the vector, the vector triple product and the conversion between scalar and vector are employed. The eigenvalue equation in photonic crystals has become the important base for obtaining the band structure and the distribution of eigenmode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号