共查询到20条相似文献,搜索用时 15 毫秒
1.
The infrared and visible image fusion algorithm based on target separation and sparse representation
Although the fused image of the infrared and visible image takes advantage of their complementary, the artifact of infrared targets and vague edges seriously interfere the fusion effect. To solve these problems, a fusion method based on infrared target extraction and sparse representation is proposed. Firstly, the infrared target is detected and separated from the background rely on the regional statistical properties. Secondly, DENCLUE (the kernel density estimation clustering method) is used to classify the source images into the target region and the background region, and the infrared target region is accurately located in the infrared image. Then the background regions of the source images are trained by Kernel Singular Value Decomposition (KSVD) dictionary to get their sparse representation, the details information is retained and the background noise is suppressed. Finally, fusion rules are built to select the fusion coefficients of two regions and coefficients are reconstructed to get the fused image. The fused image based on the proposed method not only contains a clear outline of the infrared target, but also has rich detail information. 相似文献
2.
This work devotes to the image deconvolution problem that restores clear image from its blurred and noisy measurements with little prior about the blur. A deconvolution method based on sparse and redundant representation theory is developed in this paper. It firstly represents the blur and image over different redundant dictionaries and imposes sparsity constraint to their representation coefficients respectively, then alternately estimates them using an iterative algorithm employing optimization technique. Experimental results on astronomical images show that the proposed method can achieve as good performance as the method requiring a known blur, which demonstrates its effectiveness. 相似文献
3.
In order to get an efficient image representation, we introduce a new locally adaptive Hadamard transform, called Easy Block Hadamard Transform (EBHT). EBHT is a type of directional Hadamard transform, which can be adapted to the image geometry in each block. Firstly, the image is divided into eight equal-sized squares and the adaptive directional Hadamard filter is employed to get the low-pass data and high-pass data. In the further level of the filter bank algorithm, we just divide the low-pass image into four equal-sized squares. EBHT is very simple, but effective. Numerical results show the excellent efficiency of the EBHT for sparse image representation. 相似文献
4.
With the rapid development of the face recognition technology, more and more optical products are applied in people's real life. The recognition accuracy can be improved by increasing the number of training samples, but the colossal training samples will result in the increase of computational complexity. In recent years, sparse representation method becomes a research hot spot on face recognition. In this paper we propose an energy constrain orthogonal matching pursuit (ECOMP) algorithm for sparse representation to select the few training samples and a hierarchical structure for face recognition. We filter the training samples with ECOMP algorithm and then we compute the weights by all selected training samples. At last we find the closest recovery sample to the test sample. Simultaneously the experimental results in AR, ORL and FERET database also show that our proposed method has better recognition performance than the LRC and SRC_OMP method. 相似文献
5.
为避免图像融合与超分辨率分步实现的不足,提出了基于卷积稀疏表示的融合与超分辨率重建联合实现方法。假设低分辨率与高分辨率图像之间具有相同的稀疏特征图,设计了一种高、低分辨率滤波器联合学习框架,实现对图像高低频成分的分离,并根据不同成分的形态特性设计了不同的融合规则:对于高频成分,根据稀疏特征图亮度信息和像素活跃性水平,设计了一种像素显著性度量方案来指导高频特征图的融合;对于低频成分,根据脉冲耦合神经网络能捕获邻域相似像素点火的特性,设计了低频成分融合方法。所提方法不需要将图像分割成重叠的块,避免块向量化的缺陷。实验结果表明,能有效提高图像融合的质量。 相似文献
6.
Single-image super-resolution with joint-optimization of TV regularization and sparse representation
A super-resolution (SR) reconstruction framework is proposed using regularization restoration combined with learning-based resolution enhancement via sparse representation. With the viewpoint of conventional learning methods, the original image can be split into low frequency (LF) and high frequency (HF) components. The reconstruction mainly focuses on the process of HF part, while the LF one is founded simply by typical interpolation function. For the severely blurred single-image, we first use regularization restoration technology to recover it. Then the regularized output remarkably betters the quality of LF used in traditional learning-based methods. Last, image resolution enhancement with characteristic of edge preserving can implement based on the acquired relatively sharp intermediate image and the pre-constructed over-complete dictionary for sparse representation. Specifically, the regularization can favorably weaken the dependence of atoms on the course of degradation. With both techniques, we can noticeably eliminate the blur and the edge artifacts in the enlarged image simultaneously. Various experimental results demonstrate that the proposed approach can produce visually pleasing resolution for severely blurred image. 相似文献
7.
Pedestrian detection, a key technology in computer vision, plays a paramount role in the applications of advanced driver assistant systems (ADASs) and autonomous vehicles. The objective of pedestrian detection is to identify and locate people in a dynamic environment so that accidents can be avoided. With significant variations introduced by illumination, occlusion, articulated pose, and complex background, pedestrian detection is a challenging task for visual perception. Different from visible images, thermal images are captured and presented with intensity maps based objects’ emissivity, and thus have an enhanced spectral range to make human beings perceptible from the cool background. In this study, a sparse representation based approach is proposed for pedestrian detection from thermal images. We first adopted the histogram of sparse code to represent image features and then detect pedestrian with the extracted features in an unimodal and a multimodal framework respectively. In the unimodal framework, two types of dictionaries, i.e. joint dictionary and individual dictionary, are built by learning from prepared training samples. In the multimodal framework, a weighted fusion scheme is proposed to further highlight the contributions from features with higher separability. To validate the proposed approach, experiments were conducted to compare with three widely used features: Haar wavelets (HWs), histogram of oriented gradients (HOG), and histogram of phase congruency (HPC) as well as two classification methods, i.e. AdaBoost and support vector machine (SVM). Experimental results on a publicly available data set demonstrate the superiority of the proposed approach. 相似文献
8.
Digital holographic imaging fusion for a larger size object using compressive sensing is proposed. In this method, the high frequency component of the digital hologram under discrete wavelet transform is represented sparsely by using compressive sensing so that the data redundancy of digital holographic recording can be resolved validly, the low frequency component is retained totally to ensure the image quality, and multiple reconstructed images with different clear parts corresponding to a laser spot size are fused to realize the high quality reconstructed image of a larger size object. In addition, a filter combing high-pass and low-pass filters is designed to remove the zero-order term from a digital hologram effectively. The digital holographic experimental setup based on off-axis Fresnel digital holography was constructed. The feasible and comparative experiments were carried out. The fused image was evaluated by using the Tamura texture features. The experimental results demonstrated that the proposed method can improve the processing efficiency and visual characteristics of the fused image and enlarge the size of the measured object effectively. 相似文献
9.
Sparse representation is being proved to be effective for many tasks in the field of pattern recognition. In this paper, an efficient classification algorithm based on concentrative sparse representation will be proposed to address the problem caused by insufficient training samples in each class. We firstly compute representation coefficient of the testing sample with training samples matrix using subspace pursuit recovery algorithm. Then we define concentration measurement function in order to determine whether the sparse representation coefficient is concentrative. Subspace pursuit is repeatedly used to revise the sparse representation until concentration is met. Such a concentrative sparse representation can contribute to discriminative residuals that are critical to accurate classification. The experimental results have showed that the proposed algorithm achieves a satisfying performance in both accuracy and efficiency. 相似文献
10.
The spatial resolution of hyperspectral image is often low due to the limitation of the imaging spectrometer. Fusing the original hyperspectral image with high-spatial-resolution panchromatic image is an effective approach to enhance the resolution of hyperspectral image. However, it is hard to preserve the spectral information at the same time of enhancing the resolution by the traditional fusion methods. In this paper, we proposed a fusion method based on the spectral unmixing model called sparse constraint nonnegative matrix factorization (SCNMF). This method has a superior balance of the spectral preservation and the spatial enhancement over some traditional fusion methods. In addition, the added sparse prior and NMF based unmixing model make the fusion more stable and physically reasonable. This method first decomposes the hyperspectral image into an endmember-matrix and an abundance-matrix, then sharpens the abundance-matrix with the panchromatic image, finally obtains the fused image by solving the spectral constraint optimization problem. The experiments on both synthetic and real data show the effectiveness of the proposed method. 相似文献
11.
Infrared and visible image fusion is a key problem in the field of multi-sensor image fusion. To better preserve the significant information of the infrared and visible images in the final fused image, the saliency maps of the source images is introduced into the fusion procedure. Firstly, under the framework of the joint sparse representation (JSR) model, the global and local saliency maps of the source images are obtained based on sparse coefficients. Then, a saliency detection model is proposed, which combines the global and local saliency maps to generate an integrated saliency map. Finally, a weighted fusion algorithm based on the integrated saliency map is developed to achieve the fusion progress. The experimental results show that our method is superior to the state-of-the-art methods in terms of several universal quality evaluation indexes, as well as in the visual quality. 相似文献
12.
It is always a challenging task to develop effective and accurate models for robust image restoration. In this paper, the family of sparse and redundant representation frameworks is considered as an alternative for the above problem. The principle of the family is expatiated on the development and research progress. Two well-known denoising methods are presented and analyzed on their properties. The K-SVD algorithm is an effective method for sparse representation. The iteratively approximate algorithms are always used for the solution of sparse coding operations. Here, a convexification of the l0 norm to the l1 norm is adopted in the implementation of K-SVD method. Then a split Bregman iteration solution is proposed for l1 regularization problems in the performance of the sparse representation of the K-SVD algorithm. The split Bregman iterative method is well studied and fused into the famous K-SVD method. The PSNR (Peak Signal to Noise Ratio) and MSSIM (Mean Structural Similarity) are used to evaluate the performance of those methods. Experimental results on different types of images indicate that our proposed method not only achieve comparable results with the state of art methods, but also make the original method more efficient. Besides, it also provides a valuable and promising reference for image restoration techniques. 相似文献
13.
Infrared small moving target detection is one of the crucial techniques in infrared search and tracking systems. This paper presents a novel small moving target detection method for infrared image sequence with complicated background. The key points are given as follows: (1) since target detection mainly depends on the incoherence between target and background, the proposed method separate the target from the background according to the morphological feature diversity between target and background; (2) considering the continuity of target motion in time domain, the target trajectory is extracted by the RX filter in random projection. The experiments on various clutter background sequences have validated the detection capability of the proposed method. The experimental results show that the proposed method can robustly provide a higher detection probability and a lower false alarm rate than baseline methods. 相似文献
14.
In this paper, an interesting fusion method, named as NNSP, is developed for infrared and visible image fusion, where non-negative sparse representation is used to extract the features of source images. The characteristics of non-negative sparse representation coefficients are described according to their activity levels and sparseness levels. Multiple methods are developed to detect the salient features of the source images, which include the target and contour features in the infrared images and the texture features in the visible images. The regional consistency rule is proposed to obtain the fusion guide vector for determining the fused image automatically, where the features of the source images are seamlessly integrated into the fused image. Compared with the classical and state-of-the-art methods, our experimental results have indicated that our NNSP method has better fusion performance in both noiseless and noisy situations. 相似文献
15.
A limited training set usually limits the performance of face recognition in practice. Even sparse representation-based methods which outperform in face recognition cannot avoid such situation. In order to effectively improve recognition accuracy of sparse representation-based methods on a limited training set, a novel virtual samples-based sparse representation (VSSR) method for face recognition is proposed in this paper. In the proposed method, virtual training samples are constructed to enrich the size and diversity of a training set and a sparse representation-based method is used to classify test samples. Extensive experiments on different face databases confirm that VSSR is robust to illumination variations and works better than many representative representation-based face recognition methods. 相似文献
16.
In this paper, we propose a novel method to recognize the partially occluded face images based on sparse representation. Generally, occlusions, such as glasses and scarf, fall on some random patch of image's pixels of test images, but which is known to be connected. In our method, all images are divided into several blocks and then an indicator based on linear regression technique is presented to determine whether a block is occluded. We utilize those uncontaminated blocks as the new feature of an image. Finally, the sparse representation-based classification (SRC) method serves as the classifier to recognize unknown faces. In the original work of SRC, the extended SRC (eSRC) scheme is presented to deal with occlusions, which has very heavy computational cost. The experimental results show that our method can achieve good recognition accuracy and has much lower computational cost than eSRC. 相似文献
17.
Automatic extraction of the varying regions of magnetic resonance images is required as a prior step in a diagnostic intelligent system. The sparsest representation and high-dimensional feature are provided based on learned dictionary. The classification is done by employing the technique that computes the reconstruction error locally and non-locally of each pixel. The acquired results from the real and simulated images are superior to the best MRI segmentation method with regard to the stability advantages. In addition, it is segmented exactly through a formula taken from the distance and sparse factors. Also, it is done automatically taking sparse factor in unsupervised clustering methods whose results have been improved. 相似文献
19.
The key issue of infrared object detection is to locate moving object in image sequence. In order to improve detection precision, an infrared object detection method based on local saliency and sparse representation is proposed in this paper. Motion information, such as velocity, acceleration components are added into the eigenvectors to build local saliency model. And the approximate position of the infrared target is located based on the local saliency. To accurately extract the infrared object, sparse representation is used to capture complete edge of the object. Experiments show that the proposed method can accurately detect infrared moving objects, and has good robustness to external disturbances and dynamic background. 相似文献
20.
Sparse representation is being proved to be effective for many tasks in the field of face recognition. In this paper, we will propose an efficient face recognition algorithm via sparse representation in 2D Fisherface space. We firstly transformed the 2D image into 2D Fisherface in preprocessing, and classify the testing image via sparse representation in the 2D Fisherface space. Then we extend the proposed method using some supplementary matrices to deal with random pixels corruption. For face image with contiguous occlusion, we partition each image into some blocks, and define a new rule combining sparsity and reconstruction residual to discard the occluded blocks, the final result is aggregated by voting the classification result of the valid individual block. The experimental results have shown that the proposed algorithm achieves a satisfying performance in both accuracy and robustness. 相似文献