首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose and demonstrate an OCT optical probe using eccentric optics. This probe enabled both forward imaging and side imaging by dividing a circular scanning area into two semicircular scanning areas using an external motor to rotate the flexible tube. The outer diameter of the probe was 2.6 mm, and its rigid portion length was 10 mm. The lateral resolution was 23 μm, and the eccentric radius was 1.1 mm. The circumferential length in scanning was 6.9 mm, and the working distance was 5 mm. OCT images of 1.5 mm × 6.9 mm (in tissue, axial × circumference), including forward image and side image, were measured with the axial resolution of 19 μm in air and a frame rate of one frame per second. The epidermis, dermis, and sweat gland of in vivo human ventral finger tips were observed.  相似文献   

2.
An efficient flat-top illuminating optical system optimized for an extended light source is presented. The source is a high-brightness high divergence light emitting diode (LED), sized 1 mm × 1 mm, producing monochromatic emission (525 ± 5 nm) with viewing angle of 130°. The design is based on a rotationally symmetrical catadioptric system, developed on a geometrical optics basis, and modelled with ZEMAX® software. The device consists of two optical systems: (i) a collimating system which, in turn, is formed by an aspheric lenses system (low numerical apertures, NA < 0.26) and two-mirror system (0.26 < NA < 0.86), and (ii) an external mirror (NA > 0.86) designed and optimized for each purpose. By itself, the collimating system works with a residual divergence of θC = 1.46°. The external mirror can be adequately designed to produce some given conditions. For instance, a flat-top profile is obtained in the selected focusing plane, with a maximum transversal intensity variation of 2.5% over 18 mm. In addition, when the focusing mirror is allowed to move along the optical axis in a ±1 mm range, other interesting profiles can be reached for a given working distance, therefore increasing the versatility of the system.  相似文献   

3.
We proposed and demonstrated an optical delay line composed of all reflective components for long-range scanning without walk-off problem. The optical delay line consists of a retro-reflector, an inclined reflection mirror and a scanning mirror. The size of the optical delay line is within 2 cm × 2 cm and the scanning range can reach 2.9 mm when the beam is incident at the pivot of the scanning mirror and the vibration angle of the scanning mirror is 9.6°. The scanning range can be further increased when the pivot of the scanning mirror is laterally deviated from the incident beam. The optical delay line possesses the advantages that it is compact, easy to fabricate and can perform rapid scanning in large scanning range without walk-off problem. The optical delay line was demonstrated with a low-coherence reflectometer where the scanning rate was 400 Hz. A higher scanning rate can be achieved when a scanning component with higher scanning rate is applied.  相似文献   

4.
We demonstrate narrow band optical filter like frequency response with full width half maximum (FWHM) of nearly (1.75 ± 0.25) Hz in fluorescein doped boric acid glass films [10−4 M], using modulated optical phase conjugation and a nearly non-degenerate four wave mixing technique. Modulated optical phase conjugation signals are described in the limit of a weak probe and relatively strong pump beams. Both pump beams are of nearly equal intensity at a wavelength of 514.5 nm from a continuous-wave Ar+ laser. The probe beam frequency has been detuned with a ramp signal using a piezo electric mirror.  相似文献   

5.
An elliptical microelectromechanical system (MEMS) membrane mirror is electrostatically actuated to dynamically adjust the optical beam focus and track the axial scanning of the coherence gate in a Doppler optical coherence tomography (DOCT) system at 8 kHz. The MEMS mirror is designed to maintain a constant numerical aperture of approximately 0.13 and a spot size of approximately 6.7 microm over an imaging depth of 1mm in water, which improves imaging performance in resolving microspheres in gel samples and Doppler shift estimation precision in a flow phantom. The mirror's small size (1.4 mm x 1 mm) will allow integration with endoscopic MEMS-DOCT for in vivo applications.  相似文献   

6.
In the field of lidar system design, there is a need for laser scanners that offer fast linear scanning, are small size and have small a rotational inertia moment. Currently, laser scanners do not meet the above needs. A new laser scanner based on two amplified piezoelectric actuators is designed in this paper. The laser scanner has small size, high mechanical resonance frequencies and a small rotational inertia moment. The size of the mirror is 20 mm×15 mm. To achieve fast linear scanning performance, an open-loop controller is designed to compensate the hysteresis behavior and to restrain oscillations that are caused by the mechanical resonances of the scanner's mechanical structure. By comparing measured scanning waveforms, nonlinearities and scan line images between the uncontrolled and controlled scanner, it was found that the scanning linearity of linear scanning was improved The open-loop controlled laser scanner realizes linear scanning at 250 Hz with optical scan angle of ±12 mrad.  相似文献   

7.
We demonstrated in vivo cross-sectional imaging of human fingers by non-mechanical scanning optical coherence tomography (OCT), using a diffracted light as the reference beam and a linear illumination beam at a center wavelength of 1.3 μm for deeper penetration into biological tissues. By applying the three-step phase-shifting method, our system can measure OCT images at 10 frames/s with a sensitivity of 90 dB for a 2.45 × 4.80 mm (axial × lateral) measurement range using an InGaAs digital camera (320 × 256 pixels).  相似文献   

8.
为了同时获取样品的表面和深度信息,研究光学相干层析的成像原理,建立了基于光学相干层析技术的内窥系统,实现了旋转扫描成像,系统的工作波长为1 310 nm,工作带宽为80 nm.理论推导及计算机仿真得到了系统信噪比与干涉仪的分光比、反射率之间的关系并分析了理论分辨率和探测深度.提出外径为5 mm的内窥镜扫描探头,聚焦距离为12 mm,数值孔径NA为0.47,折射率分布常量A=0.218 7.利用微型电机驱动直角棱镜实现扫描,旋转速度为25 rpm,旋转一周得到640个采样点.采用多层盖玻片和洋葱表皮作为样品进行实验分析,得到了盖玻片和洋葱的图像,横向分辨率和纵向分辨率分别为10 μm和15 μm.结果表明,设计的光学相干层析内窥系统能够用于旋转扫描成像,获取更多的组织信息.  相似文献   

9.
李乔  高长磊  陈晓冬  郁道银 《光子学报》2014,38(10):2650-2653
为了同时获取样品的表面和深度信息,研究光学相干层析的成像原理,建立了基于光学相干层析技术的内窥系统,实现了旋转扫描成像,系统的工作波长为1 310 nm,工作带宽为80 nm.理论推导及计算机仿真得到了系统信噪比与干涉仪的分光比、反射率之间的关系并分析了理论分辨率和探测深度.提出外径为5 mm的内窥镜扫描探头,聚焦距离为12 mm,数值孔径NA为0.47,折射率分布常量A=0.218 7.利用微型电机驱动直角棱镜实现扫描,旋转速度为25 rpm,旋转一周得到640个采样点.采用多层盖玻片和洋葱表皮作为样品进行实验分析,得到了盖玻片和洋葱的图像,横向分辨率和纵向分辨率分别为10 μm和15 μm.结果表明,设计的光学相干层析内窥系统能够用于旋转扫描成像,获取更多的组织信息.  相似文献   

10.
Nanocrystalline PZT thick films (1 mm square and over 10 μm thick) directly deposited onto stainless-steel substrates (PZT/SUS) by aerosol deposition (AD) technique and then annealed using focused laser beam with a fiber laser to suppress thermal damage to the back sides of the PZT/SUS and substrate near the film edge and to retain the dielectric and/or ferroelectric properties of the PZT/SUS. Compared with CO2 laser annealing, fiber laser annealing suppressed thermal damage to the substrate. Compared with PZT/SUS annealed at 600 °C using an electric furnace, PZT/SUS annealed at 600 °C using a fiber laser showed superior properties, namely, dielectric constant ? > 1200 at a frequency of 100 Hz, remanent polarization Pr > 30 μC/cm2, and coercive field strength Ec < 50 kV/cm at a frequency of 10 Hz. Furthermore, the grain growth for the PZT/SUS formed by AD technique and annealed by fiber laser irradiation was occurred within the laser spot size.  相似文献   

11.
Pan Y  Xie H  Fedder GK 《Optics letters》2001,26(24):1966-1968
An endoscopic optical coherence tomography (OCT) system based on a microelectromechanical mirror to facilitate lateral light scanning is described. The front-view OCT scope, adapted to the instrument channel of a commercial endoscopic sheath, allows real-time cross-sectional imaging of living biological tissue via direct endoscopic visual guidance. The transverse and axial resolutions of the OCT scope are roughly 20 and 10.2mum, respectively. Cross-sectional images of 500x1000 pixels covering an area of 2.9 mmx2.8 mm can be acquired at ~5 frames/s and with nearly 100-dB dynamic range. Applications in thickness measurement and bladder tissue imaging are demonstrated.  相似文献   

12.
The absorption coefficient spectra of poly(vinyl alcohol), PVA, mixed with methyl red (MR) thin films on glass substrates, prepared by the spin coating method has been investigated using scanning electron microscopy (SEM) and spectroscopic ellipsometry. SEM imaging indicates that the surface of the MR/PVA film is smooth, uniform, and no crack could be observed. Spectroscopic ellipsometry measurements of PVA and MR/PMMA thin films were carried out at three angles of incidence, over the wavelength range 400-800 nm. Optical models were used to obtain the absorption coefficients for the prepared samples. These models include Cauchy formula for the glass substrate and PVA film, Lorentz model with three oscillators for MR layer, and a Bruggeman effective medium approximation for MR/PVA films. Absorption coefficients were found to be in the range 5×103−5×104 cm−1 with a maximum being at about 475 nm. Changing the absorption coefficient as a function of increasing the pH of MR causes a shift of the absorption band toward higher wavelengths. Our results show that the absorption coefficient of the film decreases upon increasing the UV illumination time.  相似文献   

13.
In this paper, we present a bistatic scanning imaging lidar optical system. A double-sided scanning mirror is used in this system, which can compensate image spot migration. Geometrical optical analysis is conducted for the scanning light path and an optimal detector position is given. The optical simulation is also implemented using soft-ware Zemax to verify the compensation effect of double-sided reflector. An experiment is carried out with a CW-HeNe laser to observe image spot migration in different positions. The experimental results are in agreement with simulation results. In addition, imaging experiment is performed using 905 nm pulsed laser in the laboratory. The scanning image for black and white stripes target is obtained by single-element detector. Theoretical and experimental results confirm that the use of a double-sided flat reflector can effectively compensate image spot migration.  相似文献   

14.
Design and operation of a double-fiber sensor for displacement measurements are reported in this study. In this arrangement, one fiber transmits the laser light to the target and the second one receives the light reflected off the target and transmits to a photodetector. Utilizing inexpensive plastic optical fibers offers advantages such as higher reflexability and more robustness at a reasonable cost, which are required for some applications. The novelties of the reported design are compactness of the fiber probe, flexibility, long dynamic range (22 mm), and it is possible to use the source and the detector at the same side. The displacement of the target causes the intensity modulation and such a power variation is the base of sensor operation. Measurements for the metallic and non-metallic surfaces are performed and the results for aluminum, copper, and bronze sheets are presented here. Our results indicate that the sensitivity is highest for the plane mirror (288.8 mV/mm), high for the shiny metallic surfaces (230.6 mV/mm), but it can be used for other surfaces with a reasonable sensitivity. Important parameters of the sensor such as reproducibility (1.0%) and hysteresis effect (1.8%) are also investigated for this device. The theoretical formulation of the sensor operation is also developed and the computed results are compared with the experimental ones. The obtained experimental respond curve agrees well with the theoretical one, which verifies the successful operation of the proposed sensor system for precise displacement measurements.  相似文献   

15.
A. Bose 《Applied Surface Science》2010,256(21):6205-6212
PZT thin films of thickness (320-1040) nm were synthesized on Si/SiO2/Ti/Pt multilayered substrates by radio frequency magnetron sputtering. The influence of plasma pressure in the range of (0.24-4.9) Pa, during deposition, on the structural, electrical and ferroelectric properties of the PZT films was systematically studied. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and cross-sectional transmission electron microscopy (XTEM) were employed for structural study. Nano-probe Energy Dispersive (EDX) line scanning was employed to investigate the elemental distribution across the film-bottom electrode interface. I-V characteristics and polarization-electric field (P-E) hysteresis loop of the films were measured. The study reveals that the plasma pressure has a strong influence on the evolution and texture of the ferroelectric perovskite phase and microstructure of the films. At an optimum plasma pressure of 4.1 Pa, PZT films are grown with 93% perovskite phase with (1 1 1) preferred orientation and uniform granular microstructure. These films show a saturation polarization of 67 μC/cm2, remnant polarization of 30 μC/cm2 and coercive field of 28 kV/cm which, according to the literature, seem to be suitable for device applications.Transmission electron microscopy (TEM) study shows that at a plasma pressure of 4.1 Pa, the PZT/bottom Pt interface is sharp and no amorphous interlayer is formed at the interface. At a higher plasma pressure of 4.9 Pa, poor I-V and P-E hysteresis loop are observed which are interpreted as due to an amorphous interlayer at the film-bottom electrode interface which is possibly enriched in Pb, Zr, O and Pt.  相似文献   

16.
The non-crystalline Pb(Zr, Ti)O3 thin films sputtered on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates at room temperature were crystallized by conventional furnace annealing (CFA) and rapid thermal annealing (RTA), respectively. It was found that the RTA process favored the (1 1 1)-preferred orientation in lead zirconate titanate (PZT) thin films while the CFA process favored the (1 0 0)-preferred orientation. The origin of the different orientation selection might be due to the different epitaxial nucleation mechanism. The long heating duration would lead to the aggregation of Pb and the formation of PbO(1 0 0) on film surface; therefore, the nucleation at the PbO(1 0 0)/PZT interface on film surface might lead to the (1 0 0)-preferred orientation. However, the nucleation at the PZT/Pt(1 1 1) electrode interface by RTA process would result in the formation of (1 1 1)-preferred orientation. The RTA-derived (1 1 1)-preferentially oriented PZT thin films exhibited a high remnant polarization of 35 μC/cm2.  相似文献   

17.
对双波段红外扫描成像光学系统进行了研究,结合三次成像技术和100%冷光栏效率技术,设计了一个共口径双通道红外扫描成像光学系统。该系统包括前端共用的双反射系统、分束镜、准直镜组、扫描镜和成像镜组。光波经过双反射系统在主镜之后被分束镜分成中波红外通道(3 m~5 m)和长波红外通道(10 m~12 m),经准直镜组及成像镜组会聚探测器上,实现中波红外系统与长波红外系统共口径同步成像。设计结果表明,长波红外系统传递函数在18 lp/mm处达到0.4以上,中波红外系统传递函数在18 lp/mm处达到0.78以上,满足实际应用的要求。  相似文献   

18.
刘壮  巩岩 《光子学报》2012,41(7):776-780
针对太阳极紫外成像光谱仪的应用目的与工作环境,设计了一种太阳极紫外成像光谱仪的光学系统.该系统由望远系统、狭缝、光栅与探测器组成.望远系统采用离轴WolterⅡ型结构,入射光掠入射进入系统,具有光谱范围宽、稳定性高、克服恶劣空间环境能力强等优点.扫描镜采用平面反射镜,成像质量不随扫描角的改变而改变.分光光栅采用超环面3 600lines/mm变间距光栅,与超环面等间距光栅相比,具有成像质量高、光谱分辨率高、缩短系统长度的优势.工作波段为17.0~21.0nm,可满足探索温度在5.8≤log T≤6.3区间的宁静日冕的需要.视场为1 228″×2 400″,空间分辨率达到0.8arc second/pixel,光谱分辨率约为0.001 98nm/pixel,总长度不超过2.5m.计算了望远系统的理论有效面积,给出了望远系统的成像质量与实际的视场.系统整体的成像质量、光栅的谱线弯曲与谱带弯曲,均满足实际应用要求.  相似文献   

19.
Diffusion weighted magnetic resonance imaging (DWI) has been mostly acquired using single-shot echo-planar imaging (ss EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in ss EPI especially for abdominal imaging, even with the advances in parallel imaging. A novel method of reduced Field of View ss EPI (rFOV ss EPI) has achieved high resolution DWI in human carotid artery, spinal cord with reduced blurring and higher spatial resolution than conventional ss EPI, but it has not been used to pancreas imaging. In the work, comparisons between the full FOV ss-DW EPI and rFOV ss-DW EPI in image qualities and ADC values of pancreatic tumors and normal pancreatic tissues were performed to demonstrate the feasibility of pancreatic high resolution rFOV DWI. There were no significant differences in the mean ADC values between full FOV DWI and rFOV DWI for the 17 subjects using b = 600 s/mm2 (P = 0.962). However, subjective scores of image quality was significantly higher at rFOV ss DWI (P = 0.008 and 0.000 for b-value = 0 s/mm2 and 600 s/mm2 respectively). The spatial resolution of DWI for pancreas was increased by a factor of over 2.0 (from almost 3.0 mm/pixel to 1.25 mm/pixel) using rFOV ss EPI technique. Reduced FOV ss EPI can provide good DW images and is promising to benefit applications for pancreatic diseases.  相似文献   

20.
For the first time, to the best of authors’ knowledge, a no-moving-parts axial scanning confocal microscope (ASCM) system is designed and demonstrated using a combination of a large diameter liquid crystal (LC) lens and a classical microscope objective lens. By electrically controlling the 5 mm diameter LC lens, the 633 nm wavelength focal spot is moved continuously over a 48 μm range with a measured 3-dB axial resolution of 3.1 μm using a 0.65 numerical aperture (NA) micro-objective lens. The ASCM is successfully used to image an Indium Phosphide (InP) twin square optical waveguide sample with a 10.2 μm waveguide pitch and 2.3 μm height and width. Using fine analog electrical control of the LC lens, a super-fine sub-wavelength axial resolution of 270 nm is demonstrated. The proposed ASCM can be useful in various precision three-dimensional (3D) imaging and profiling applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号