首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel waveguide ring resonator optical sensor with two resonant wavelength channels is proposed for a refractive index measurement of a test sample placed on the sensor substrate and its performance characteristics are investigated analytically and numerically. The waveguide device consists of a ring resonator, a split-ring-shaped loop waveguide, and a vertical input/output grating coupler, in which the loop waveguide acts as an additional resonator and provides another output wavelength channel of the sensor. The differential detection between the two wavelength channels enables the highly sensitive detection with temperature compensation. A numerical simulation based on a finite difference time domain (FDTD) method shows that a precise index change detection with a resolution of 10−6 can be achieved using of the proposed device.  相似文献   

2.
光子晶体光纤气体传感灵敏度的有限差分法分析   总被引:1,自引:1,他引:0  
提出了一种适合于高灵敏度气体传感器的新型光子晶体光纤结构.采用全矢量频域有限差分方法,研究了基于不同结构光子晶体光纤的气体传感器的相对灵敏度.由全矢量频域有限差分法,通过直接求解由麦克斯韦方程组导出的标准特征值方程,可以得到光纤中可能存在的不同模式的传播常量、电场分布和磁场分布.分别给出了三种不同结构光子晶体光纤在波长为1.3312 μm处,与结构参量变化对应的相对灵敏度变化以及在不同波长情况下的相对灵敏度变化.结果证明,该新结构具有较其它代表性的折射率引导型光子晶体光纤结构更高的灵敏度,特别适合作气体传感器.  相似文献   

3.
We present a new design for simultaneous strain and temperature measurement using a high-birefringence fiber loop mirror (HiBi-FLM) concatenated with a temperature-insensitive long-period grating (LPG) written in a photonic crystal fiber (PCF). The FLM acts as a sensor head, while the LPG in PCF serves as a filter to convert wavelength variation to optical power change. By measuring the wavelength variation and the power difference of two near peaks in the spectral response of this configuration, simultaneous strain and temperature measurement is obtained.  相似文献   

4.
温度对液晶填充光子晶体光纤传输特性的影响   总被引:6,自引:0,他引:6  
钱祥忠 《光学学报》2008,28(5):988-991
利用液晶的折射率是温度和波长函数的特性,在光子晶体光纤(PCF)芯区的空气柱中填充向列相液晶,通过改变温度来改变液晶的折射率,构成了一种温度凋制光子晶体光纤.用阶跃有效折射率模型研究了温度对这种光子晶体光纤在不同光波长时传输特性的影响,并进行了数值计算.结果表明液晶填充使光子晶体光纤的色散减小,由于折射率对温度和波长变化敏感,改变温度可以使光纤在长波长区域出现单模传输,在短波长时不会出现单模传输,即使包层相对孔径很小也不会出现无截止单模传输.温度升高使光纤的色散值增大,零色散波长向短波长方向移动.这些特性对温度调制光子晶体光纤器件的设计和应用具有一定的参考意义.  相似文献   

5.
刘天沐  江毅  崔洋 《光子学报》2020,49(4):115-122
提出了一种在高温环境下同时测量温度和气压的光子晶体光纤温度压力传感器.在普通单模光纤和光子晶体光纤之间熔接一段空心光纤构成干涉结构.空心光纤段构成非本征法布里-珀罗干涉仪,利用光子晶体光纤的微孔与外界相通,通过气体折射率变化来测量环境中的气压变化;光子晶体光纤段构成本征法布里-珀罗干涉仪,利用热膨胀效应和热光效应来测量环境中的温度.传感器的解调通过自制的白光干涉解调仪实现,实验通过测量腔长得到被测环境的温度和气压.在不同温度和气压环境下,对腔长分别为306μm和1535μm的温度压力光纤传感器进行连续测量.实验结果表明,传感器能够在28~800℃的温度下和0~10 MPa的气压下稳定工作,测量范围内温度灵敏度可达17.4 nm/℃,压力灵敏度随温度增加而降低,在28℃时可达1460.5 nm/MPa.  相似文献   

6.
ABSTRACT

A novel mid-infrared Ge20Sb15Se65 chalcogenide-based single-polarization single-mode (SPSM) photonic crystal fiber (PCF) with rectangular latticed circular air holes is proposed. The properties of SPSM bandwidth, confinement loss, and nonlinearity are analyzed in the 3 μm~8 μm mid-infrared region using the finite -difference time-domain (FDTD) method. The influences of different geometrical parameters on the properties of SPSM-PCF are analyzed. All numerical computational results reveal that for the optimized geometrical parameters, the proposed PCF can deliver a SPSM region of more than 2.3814 μm with high nonlinearity of 3,705 w?1 km?1. Therefore, such a SPSM-PCF will become an excellent candidate for mid-infrared photonic.  相似文献   

7.
赵安平  何晓东 《光子学报》1998,27(10):880-885
为分析具有任意介电常数张量的各向异性波导的导模,本文通过把简化的二维时域有限差分(2-DFDTD)法扩展至任意各向异性介质,提出了一种以DEH场为基础的统一的简化2-DFDTD模型.利用该模型,研究了简化的复数2-DFDTD方法与实变数2-DFDTD方法之间的关系.文中还讨论了复变数方法和实变数方法的激励技术.  相似文献   

8.
We propose a surface long-period grating (LPG) based on a D-shaped photonic crystal fiber (PCF). The D-shaped PCF is fabricated by a side-polishing technique. The surface LPG based on periodic patterns of photoresist (PR) is formed by using the spin-coating and the standard contact lithography methods. Resonant coupling is created by the surface PR-LPG in the D-shaped PCF. The resonant peak shifts to longer wavelength as the ambient index is increased and shifts to shorter wavelength as the temperature is increased. The total wavelength shift is measured to be 122 nm in the refractive index range from 1 to 1.45 and the temperature sensitivity is measured to be −0.3 nm/°C in the temperature range from 30 to 100°C.  相似文献   

9.
A whole temperature sensor in one package utilizing a fiber Bragg grating (FBG) made in a conventional single-mode fiber and which uses a long-period grating (LPG) made in a photonic crystal fiber is proposed and experimentally demonstrated. The function of the interrogation is that the wavelength change of the FBG with environmental temperature is transferred to the intensity of the output via the LPG. Utilizing the temperature-insensitivity of the LPG in the PCF, the interrogation is stable and enables a cheap and practical temperature measurement system with a wide dynamic range.  相似文献   

10.
双折射光子晶体光纤传输特性分析   总被引:6,自引:2,他引:6  
池灏 《光学学报》2004,24(11):552-1556
采用时域有限差分法对光子晶体光纤导模的传输特性进行数值分析,通过该法可得到任意横向结构光子晶体光纤的色散特性和双折射特性。为提高精度,在计算中应用了各向异性完全匹配层作为吸收边界条件。光子晶体光纤的传输特性完全由其横向结构决定。用时域有限差分法对一类对称结构和两类非对称结构光子晶体光纤进行了数值分析,计算结果表明经合理设计的非对称结构光子晶体光纤中可存在较高的双折射(其双折射可达0.07)。表明时域有限差分法可有效应用于分析和设计具有特定色散和偏振特性的光子晶体光纤。  相似文献   

11.
张瑾  常敏  陈楠  刘学静  章曦  杜嘉  丁鑫 《光学技术》2022,48(1):109-115
现有报道的PCF-SPR折射率传感器的检测范围普遍较窄,不能实现低折射率的检测,且工作波段多数集中在可见光或通信波段,这限制了传感器的应用范围.鉴于此,提出了一种基于D型双芯PCF结构的SPR传感器,使用氧化铟锡作为等离子体材料沉积在D型PCF抛光表面,并对该传感器的理论模型进行了分析,包括金属参数对传感性能的影响,P...  相似文献   

12.
An optical fiber curvature sensor with low-birefringence photonic crystal fiber (PCF) based Sagnac loop is demonstrated experimentally. The low-birefringence PCF of about 40 cm long is inserted into Sagnac loop, and a section of it about 155 mm is used as the sensing element. The Sagnac output spectra under different curvatures are measured and analyzed. The results show that the wavelength shift of the transmission dip has a linear relationship with the curvature. The sensitivity of the curvature measurement of − 0.337 nm is achieved in the range of 0-9.92 m− 1. And the temperature effect of the proposed sensor is also analyzed.  相似文献   

13.
In this paper we present an interferometer based on photonic crystal fiber (PCF) tip ended with a solid silica-sphere for refractive index sensing. The sensor is fabricated by splicing one end of the holey PCF to a single mode fiber (SMF) and applying arc at the other end to form a solid sphere. The sensor has been experimentally tested for refractive index and temperature sensing by monitoring its wavelength shift. Measurement results show that the sensor has the resolution of the order of 8.7×10(-4) over the refractive index range of 1.33-1.40, and temperature sensitivity of the order of 10 pm/°C in the range of 20-100 °C.  相似文献   

14.
In this article, a new simplified structure of a highly birefringent chalcogenide As2Se3 glass photonic crystal fiber (PCF) is designed and analyzed by using fully vectorial finite element method. The effective indices, confinement loss, birefringence, and chromatic dispersion of fundamental polarized mode are calculated in the proposed PCF for a wide wavelength range. To maintain the polarization in chalcogenide As2Se3 glass PCF, we enlarged two of the central air holes and reduced two transverse air holes for achieving high birefringence. This helps in creating an effective index difference between the two orthogonal polarization modes. It is also shown that As2Se3 glass PCF provides lower chromatic dispersion and less confinement loss compared to silica PCF of the same structure in wavelength range 1.3 to 1.8 μm and hence such chalcogenide As2Se3 glass PCF have high potential to be used in dispersion compensating and birefringence application in optical communication systems. In addition to this, the polarization mode dispersion (PMD) result of the proposed PCF is also reported.  相似文献   

15.
A new highly birefringent octagonal photonic crystal fiber(Hi-Bi OPCF) with a rectangular array of four elliptical airholes in the fiber core region is proposed and analyzed using the full-vector finite element method with anisotropic perfect match layer absorbing boundaries.Numerical results show that the phase birefringence of the photonic crystal fiber(PCF) reaches 3.43×10-2 at the wavelength of 1 550 nm.Moreover,two zero-dispersion wavelengths are achieved in the visible and near infrared wavelength regions for one polarization state but not in the other.  相似文献   

16.
The article describes a novel doped CS2 core photonic crystal fiber with high negative chromatic dispersion. The proposed design is simulated through a full-vector finite element method and anisotropic perfectly matched layers. The numerical results show that we can achieve a negative dispersion coefficient of ?5600 ps/(nm km) almost at the wavelength of 1.55 μm by carefully adjusting the proposed PCF structure parameters. The proposed PCF may have great potential applications in dispersion compensating, optical parametric amplification, and optical fiber communication.  相似文献   

17.
提出并制作了一种基于多芯光纤与单模光纤错位构成的马赫-曾德尔干涉仪,将其与光纤布喇格光栅级联,形成的全光纤传感系统可实现横向压力和温度双参量同时测量.马赫-曾德尔干涉仪是利用多芯光纤和单模光纤的模场不匹配而发生模间干涉,当外界横向压力直接作用在多芯光纤内部光场,干涉仪具有较高的灵敏度.实验结果表明:马赫-曾德尔干涉仪压力灵敏度为28.57nm/(N·mm~(-1)),线性度为0.997,而光纤布喇格光栅在一定范围内对压力变化不敏感;马赫-曾德干涉仪和光纤布喇格光栅对温度变化都具有较高的线性度,温度灵敏度分别为56.1pm/℃和11.3pm/℃.对于分辨率为0.02nm的光谱仪,传感器可实现的压力和温度测量分辨率分别为7.0×10~(-4)N/mm和0.03℃.马赫-曾德尔干涉仪的透射谱和光纤布拉光栅的谐振峰对横向压力和温度的变化有不同的光谱响应,利用光谱仪对传感器的透射谱实时监测,方便地实现了压力与温度双参量的测量.该传感器结构简单,灵敏度高,可用于不同领域的压力传感.  相似文献   

18.
In this paper, we propose a new design principle of two-dimensional photonic crystal refractive index sensors with high transmission and sensitivity simultaneously. The proposed sensor is made of two waveguide couplers and one microcavity which is obtained by varying the radius of one air hole in the center of PC structure. The microcavity is separated from the input and output waveguides by many holes of the PC. It is shown that by injecting an analyte such as gas or a liquid into a sensing hole, and thus changing its refractive index, a shift in the resonant wavelength may occur. The transmission spectra, quality factor and sensitivity of the sensor have been analyzed numerically by the finite difference time domain (FDTD) method. The sensitivity value of the sensor has been found to be 668 nm/(RIU with minimum detection limit of 0.002 RIU), which proves the ability of the structure to produce biosensor PhC.  相似文献   

19.
The present paper proposes a novel design for achieving single-polarization single-mode (SPSM) operation at 1550 nm in photonic crystal fiber (PCF), using a rectangular-lattice PCF with two lines of three central air holes enlarged. The proposed PCF composed entirely of silica material is modeled by a full-vector finite element method with anisotropic perfectly matched layers. Simulations show that single-polarization operation within broad wavelength range can be easily realized with the proposed structure. The wideband SPSM operation features, the low confinement losses, and the small effective mode area are the main advantages of the proposed PCF structure. A SPSM-PCF with confinement loss less than 0.1 dB/km within wavelength range from 1370 to 1610 nm and effective mode area about 4.7 μm2 at 1550 nm is numerically demonstrated.  相似文献   

20.
A novel photonic crystal fiber (PCF) based on a four-hole unit is proposed in order to meet the requirements of high birefringence, negative dispersion and confinement loss in fiber-optic communication. The proposed design has been simulated based on the full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). Analysis results show that the proposed PCF can achieve a high birefringence to the order of 10−2 at the wavelength of 1.55 μm, a large negative dispersion over a wide wavelength range and confinement losses lower than 10−9 dB/m simultaneously, which has important applications in polarization-maintaining (PM) fibers, single-polarization single-mode (SPSM) fibers, dispersion compensation fibers and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号