共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Flavin-zinc(II)-cyclen 10 contains a covalently linked substrate binding site (zinc(II)-cyclen) and a chromophore unit (flavin). Upon irradiation, compound 10 effectively oxidizes 4-methoxybenzyl alcohol (11-OCH3) to the corresponding benzaldehyde both in water and in acetonitrile. In the presence of air, the reduced flavin 10-H2 is reoxidized, and so catalytic amounts of 10 are sufficient for alcohol conversion. The mechanism of oxidation is based on photoinduced electron transfer from the coordinated benzyl alcohol to the flavin chromophore. This intramolecular process provides a much higher photooxidation efficiency, with quantum yields 30 times those of the comparable intermolecular process with a flavin chromophore without a binding site. For the reaction in buffered aqueous solution a quantum yield of Phi = 0.4 is observed. The turnover number in acetonitrile is increased (up to 20) by high benzyl alcohol concentrations. The results show that the covalent combination of a chromophore and a suitable binding site may lead to photomediators more efficient than classical sensitizer molecules. 相似文献
3.
4.
5.
Margherita Venturi Filippo Marchioni Belén Ferrer Ribera Vincenzo Balzani Dorina M Opris A Dieter Schlüter 《Chemphyschem》2006,7(1):229-239
The PF6- salt of the dinuclear [(bpy)2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2'-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, was prepared. In acetonitrile solution, the Ru- and Os-based units display their characteristic absorption spectra and electrochemical properties as in the parent homodinuclear compounds. The luminescence spectrum, however, shows that the emission band of the Ru(II) unit is almost completely quenched with concomitant sensitization of the emission of the Os(II) unit. Electronic energy transfer from the Ru(II) to the Os(II) unit takes place by two distinct processes (k(en) = 2.0x10(8) and 2.2x10(7) s(-1) at 298 K). Oxidation of the Os(II) unit of [(bpy)2Ru(1)Os(bpy)2]4+ by Ce(IV) or nitric acid leads quantitatively to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ complex which exhibits a bpy-to-Os(III) charge-transfer band at 720 nm (epsilon(max) = 250 M(-1) cm(-1)). Light excitation of the Ru(II) unit of [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ is followed by electron transfer from the Ru(II) to the Os(III) unit (k(el,f) = 1.6x10(8) and 2.7x10(7) s(-1)), resulting in the transient formation of the [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ complex. The latter species relaxes to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ one by back electron transfer (k(el,b) = 9.1x10(7) and 1.2x10(7) s(-1)). The biexponential decays of the [(bpy)2*Ru(II)(1)Os(II)(bpy)2]4+, [(bpy)2*Ru(II)(1)Os(III)(bpy)2]5+, and [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ species are related to the presence of two conformers, as expected because of the steric hindrance between hydrogen atoms of the pyridine and phenyl rings. Comparison of the results obtained with those previously reported for other Ru-Os polypyridine complexes shows that the macrocyclic ligand 1 is a relatively poor conducting bridge. 相似文献
6.
Reversal of a Single Base‐Pair Step Controls Guanine Photo‐Oxidation by an Intercalating Ruthenium(II) Dipyridophenazine Complex 下载免费PDF全文
Dr. Páraic M. Keane Fergus E. Poynton Dr. James P. Hall Dr. Igor V. Sazanovich Prof. Michael Towrie Prof. Thorfinnur Gunnlaugsson Dr. Susan J. Quinn Prof. Christine J. Cardin Prof. John M. Kelly 《Angewandte Chemie (International ed. in English)》2015,54(29):8364-8368
Small changes in DNA sequence can often have major biological effects. Here the rates and yields of guanine photo‐oxidation by Λ‐[Ru(TAP)2(dppz)]2+ have been compared in 5′‐{CCGG AT CCGG}2 and 5′‐{CCGG TA CCGG}2 using pico/nanosecond transient visible and time‐resolved IR (TRIR) spectroscopy. The inefficiency of electron transfer in the TA sequence is consistent with the 5′‐TA‐3′ versus 5′‐AT‐3′ binding preference predicted by X‐ray crystallography. The TRIR spectra also reveal the differences in binding sites in the two oligonucleotides. 相似文献
7.
Frontispiece: Reversal of a Single Base‐Pair Step Controls Guanine Photo‐Oxidation by an Intercalating Ruthenium(II) Dipyridophenazine Complex 下载免费PDF全文
Dr. Páraic M. Keane Fergus E. Poynton Dr. James P. Hall Dr. Igor V. Sazanovich Prof. Michael Towrie Prof. Thorfinnur Gunnlaugsson Dr. Susan J. Quinn Prof. Christine J. Cardin Prof. John M. Kelly 《Angewandte Chemie (International ed. in English)》2015,54(29)
8.
de Tacconi NR Lezna RO Konduri R Ongeri F Rajeshwar K MacDonnell FM 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(15):4327-4339
The dinuclear ruthenium complex [(phen)2Ru(tatpp)Ru(phen)2]4+ (P; in which phen is 1,10-phenanthroline and tatpp is 9,11,20,22-tetraaza tetrapyrido[3,2-a:2'3'-c:3',2'-l:2',3']-pentacene) undergoes a photodriven two-electron reduction in aqueous solution, thus storing light energy as chemical potential within its structure. The mechanism of this reduction is strongly influenced by the pH, in that basic conditions favor a sequential process involving two one-electron reductions and neutral or slightly acidic conditions favor a proton-coupled, bielectronic process. In this complex, the central tatpp ligand is the site of electron storage and protonation of the central aza nitrogen atoms in the reduced products is observed as a function of the solution pH. The reduction mechanism and characterization of the rich array of products were determined by using a combination of cyclic and AC voltammetry along with UV-visible reflectance spectroelectrochemistry experiments. Both the reduction and protonation state of P could be followed as a function of pH and potential. From these data, estimates of the various reduced species' pKa values were obtained and the mechanism to form the doubly reduced, doubly protonated complex, [(phen)2Ru(H2tatpp)Ru(phen)2]4+ (H2P) at low pH (< or =7) could be shown to be a two-proton, two-electron process. Importantly, H2P is also formed in the photochemical reaction with sacrificial reducing agents, albeit at reduced yields relative to those at higher pH. 相似文献
9.
Xu Y Eilers G Borgström M Pan J Abrahamsson M Magnuson A Lomoth R Bergquist J Polívka T Sun L Sundström V Styring S Hammarström L Akermark B 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(24):7305-7314
To mimic the electron-donor side of photosystem II (PSII), three trinuclear ruthenium complexes (2, 2a, 2b) were synthesized. In these complexes, a mixed-valent dinuclear Ru2(II,III) moiety with one phenoxy and two acetato bridges is covalently linked to a Ru(II) tris-bipyridine photosensitizer. The properties and photoinduced electron/energy transfer of these complexes were studied. The results show that the Ru2(II,III) moieties in the complexes readily undergo reversible one-electron reduction and one-electron oxidation to give the Ru2(II,III) and Ru2(III,III) states, respectively. This could allow for photooxidation of the sensitizer part with an external acceptor and subsequent electron transfer from the dinuclear ruthenium moiety to regenerate the sensitizer. However, all trinuclear ruthenium complexes have a very short excited-state lifetime, in the range of a few nanoseconds to less than 100 ps. Studies by femtosecond time-resolved techniques suggest that a mixture of intramolecular energy and electron transfer between the dinuclear ruthenium moiety and the excited [Ru(bpy)3]2+ photosensitizer is responsible for the short lifetimes. This problem is overcome by anchoring the complexes with ester- or carboxyl-substituted bipyridine ligands (2a, 2b) to nanocrystalline TiO2, and the desired electron transfer from the excited state of the [Ru(bpy)3]2+ moiety to the conduction band of TiO2 followed by intramolecular electron transfer from the dinuclear Ru2(II,III) moiety to photogenerated Ru(III) was observed. The resulting long-lived Ru2(III,III) state decays on the millisecond timescale. 相似文献
10.
Theoretical study on photooxidation mechanism of ruthenium complex [Ru(II)‐(bpy)2(TMBiimH2)]2+ with molecular oxygen 下载免费PDF全文
Li‐Hong Liu Dan Wu Shu‐Hua Xia Ganglong Cui 《Journal of computational chemistry》2016,37(24):2212-2219
Photoinduced reactions of ruthenium complexes with molecular oxygen have attracted a lot of experimental attention; however, the reaction mechanism remains elusive. In this work, we have used the density functional theory method to scrutinize the visible‐light induced photooxidation mechanism of the ruthenium complex [Ru(II)‐(bpy)2(TMBiimH2)]2+ (bpy: 2, 2‐bipyridine and TMBiimH2: 4, 5, 4, 5‐tetramethyl‐2, 2‐biimidazole) initiated by the attack of molecular oxygen. The present computational results not only explain very well recent experiments, also provide new mechanistic insights. We found that: (1) the triplet energy transfer process between the triplet molecular oxygen and the metal‐ligand charge transfer triplet state of the ruthenium complex, which leads to singlet molecular oxygen, is thermodynamically favorable; (2) the singlet oxygen addition process to the S0 ruthenium complex is facile in energy; (3) the chemical transformation from endoperoxide to epidioxetane intermediates can be either two‐ or one‐step reaction (the latter is energetically favored). These findings contribute important mechanistic information to photooxidation reactions of ruthenium complexes with molecular oxygen. © 2016 Wiley Periodicals, Inc. 相似文献
11.
Browne WR O'Boyle NM Henry W Guckian AL Horn S Fett T O'Connor CM Duati M De Cola L Coates CG Ronayne KL McGarvey JJ Vos JG 《Journal of the American Chemical Society》2005,127(4):1229-1241
The synthesis, characterization, and electrochemical, photophysical, and photochemical properties of the binuclear compounds [(Ru(H8-bpy)2)2((Metr)2Pz)](PF6)2 (1) and [(Ru(D8-bpy)2)2((Metr)2Pz)](PF6)2 (2), where bpy is 2,2'-bipyridine and H2(Metr)2Pz is the planar ligand 2,5-bis(5'-methyl-4'H-[1,2,4]triaz-3'-yl)pyrazine, are reported. Electrochemical and spectro-electrochemical investigations indicate that the ground-state interaction between each metal center is predominantly electrostatic and in the mixed-valence form only a low level of ground-state delocalization is present. Resonance Raman, transient, and time-resolved spectroscopies enable a detailed assignment to be made of the excited-state photophysical properties of the complexes. Deuteriation is employed to both facilitate spectroscopic characterization and investigate the nature of the lowest excited states. 相似文献
12.
13.
trans-[XRu(py)4(NO)]2+(X=Cl,Br)与等物质的量的NaN3在甲醇中反应后生成中间体trans-[XRu(py)4(CH3OH)]+,它再与过量的Na[N(CN)2]或K[C(CN)3]反应后生成单核配合物trans-XRu(py)3L(X=Cl,Br,L=N(CN)2-,C(CN)3-)。单核配合物XRu(py)4L与[X′Ru(py)4(CH3OH)]+进行分子组装,生成了一系列双核钌配合物trans-[X(py)4Ru(μ-L)Ru(py)4X′]+。用等物质的量的NOBF4或(NH4)2[Ce(NO3)6]氧化这些RuⅡRuⅡ双核钌配合物,得到了一系列RuⅡRuⅢ混合价配合物trans-[X(py)4Ru(μ-L)Ru(py)4X′]2+。N(CN)2-桥联的RuⅡRuⅢ混合价配合物在近红外区存在中等强度的吸收,起源于混合价态间的电荷跃迁(Intervalence Charge Transfer,简称为IVCT),且其最大吸收波长随着溶剂极性的改变而发生变化,它们属于Class Ⅱ类型的混合价化合物;而C(CN)3-桥联的RuⅡRuⅢ混合价配合物在近红外的吸收要强得多,且溶剂极性的改变对IVCT最大吸收波长基本无影响,它们属于介于价态定域与离域之间的混合价配合物。 相似文献
14.
15.
16.
Novel cyclohexyl‐based aminophosphine ligands and use of their Ru(II) complexes in transfer hydrogenation of ketones 下载免费PDF全文
Cezmi Kayan Nermin Meriç Murat Aydemir Yusuf Selim Ocak Ak𝚤n Baysal Hamdi Temel 《应用有机金属化学》2014,28(2):127-133
Two new aminophosphines – furfuryl‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3O] ( 1 ) and thiophene‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3S] ( 2 ) – were prepared by the reaction of chlorodicyclohexylphosphine with furfurylamine and thiophene‐2‐methylamine. Reaction of the aminophosphines with [Ru(η6‐p‐cymene)(μ‐Cl)Cl]2 or [Ru(η6‐benzene)(μ‐Cl)Cl]2 gave corresponding complexes [Ru(Cy2PNHCH2–C4H3O)(η6‐p‐cymene)Cl2] ( 1a ), [Ru(Cy2PNHCH2–C4H3O)(η6‐benzene)Cl2] ( 1b ), [Ru(Cy2PNHCH2–C4H3S)(η6‐p‐cymene)Cl2] ( 2a ) and [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] ( 2b ), respectively, which are suitable catalyst precursors for the transfer hydrogenation of ketones. In particular, [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] acts as a good catalyst, giving the corresponding alcohols in 98–99% yield in 30 min at 82 °C (up to time of flight ≤ 588 h?1). Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
17.
Catalytic activity of Ru/tetrahydropyrimidinium salts system for transfer hydrogenation reactions 下载免费PDF全文
Emine Özge Karaca Nevin Gürbüz Hakan Arslan Don VanDerveer İsmail Özdemir 《应用有机金属化学》2015,29(7):475-480
New 1,3‐dialkyltetrahydropyrimidinium salts as NHC precursors have been synthesized and characterized. The in situ prepared three‐component 1,3‐dialkyltetrahydropyrimidinium salts/[RuCl2(p‐cymene)]2 and KOH catalyzes quantitatively the transfer hydrogenation of ketones under mild reaction conditions in 2‐propanol. Also, the molecular structure of 1,3‐bis(2‐methylbenzyl)‐3,4,5,6‐tetrahydropyrimidinium was determined using single‐crystal X‐ray diffraction. Ions of the title compound are linked by C? H…Cl and O? H…Cl hydrogen bonding interactions. The N? C? N bond angle (124.3(2)°) and C? N bond lengths (1.316(3) and 1.314(3) Å) confirm the existence of strong resonance in this part of the molecule. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
18.
Cuenca AB Mancha G Asensio G Medio-Simón M 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(5):1518-1523
An efficient and broad-scoped method for the preparation of unsymmetrical ethers from alcohols catalysed by the simplest and least expensive gold catalyst, NaAuCl(4), is described for the first time. The procedure enables the etherification of benzylic and tertiary alcohols with moderate to good yields under mild conditions with low catalyst loading. Symmetrical ethers, the usual side products in the etherification of alcohols, were not detected in this case. The formation of the racemic ether from a chiral benzyl alcohol suggests the intermediacy of a carbocation, which has not previously been postulated for gold-catalysed reactions involving alcohols. 相似文献
19.
Julien Christmann Dr. Ahmad Ibrahim Dr. Vincent Charlot Prof. Céline Croutxé‐Barghorn Prof. Christian Ley Prof. Xavier Allonas 《Chemphyschem》2016,17(15):2309-2314
Photocatalysis reactions using [RuII(bpy)3]2+ were studied on the example of visible‐light‐sensitized reversible addition–fragmentation chain transfer (RAFT) polymerization. Although both photoinduced electron‐ and energy‐transfer mechanisms are able to describe this interaction, no definitive experimental proof has been presented so far. This paper investigates the actual mechanism governing this reaction. A set of RAFT agents was selected, their redox potentials measured by cyclic voltammetry, and relaxed triplet energies calculated by quantum mechanics. Gibbs free‐energy values were calculated for both electron‐ and energy‐transfer mechanisms. Quenching rate constants were determined by laser flash photolysis. The results undoubtedly evidence the involvement of a photoinduced energy‐transfer reaction. Controlled photopolymerization experiments are discussed in the light of the primary photochemical process and photodissociation ability of RAFT agent triplet states. 相似文献
20.
Monhaphol TK Andersson S Sun L 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(41):11604-11612
The synthesis of two supramolecular diruthenium complexes, 1 ?CB[7] and 1 ?CB[8] (CB[n]=cucurbit[n]uril), which contain the respective host CB[7] and CB[8], were synthesized and isolated. In the case of host CB[8], the desired supramolecular complex was obtained by utilizing dihydroxynapthalene as a template during the synthesis. The 1H NMR spectra, electrochemistry, and photochemistry of these supramolecular complexes were performed in nonaqueous solution. The results show that both CB[7,8] hosts mainly bind to the linker part in solution in acetonitrile. This binding also lowers the oxidation potential of the ruthenium metal center and hinders the quenching effect by the viologen moiety. It has also been shown that external methylviologen can be included into 1 ?CB[8]. Analysis with NMR spectroscopy, electrochemistry, and photochemistry clearly shows a viologen radical dimer formation between the bound viologen and free methylviologen, thereby showing that the unique abilities of the CB[8] host can be utilized even in nonaqueous solution. 相似文献