首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identification of isoforms is one of the great challenges in proteomics due to the large number of identical amino acids preventing their separations by two-dimensional electrophoresis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has become a rapid and sensitive tool in proteomics, notably with the new instrumental improvements. In this study, we used several acquisition modes of MALDI-TOFMS to identify isoforms of porcine glutathiones S-transferase. The use of multiple proteases coupled to the different acquisition modes of MALDI-TOFMS (linear, reflectron, post-source decay (PSD) and in-source decay, positive and negative modes) allowed the identification of two sequences. Moreover, a third sequence is pointed out from a PSD study of a tryptic ion revealing the modification of the amino acid tyrosine 146 to phenylalanine.  相似文献   

2.
Fragmentation of polyethers, such as poly(ethylene glycol) (PEG), poly(propylene glycol) and poly(tetramethylene glycol) was analyzed by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) using a quadrupole ion trap time-of-flight mass spectrometer (QIT-ToF). The Li adduct ion provided more abundant fragments than the Na and K adduct ions in the MS/MS spectra. A previous study had demonstrated four series fragments of hydroxyl-, vinyl- and formyl-terminated ions, as well as distonic cations, in high-energy fast atom bombardment MS/MS and MALDI collision-induced dissociation measurements of poly(ethylene glycol). In the present study, the low-energy MS/MS measurements using MALDI-QIT-ToF, showed hydroxyl-, vinyl- and formyl- terminated fragments with or without other fragment groups, but not distonic cations. The fragmentation depended on the types of polyethers examined. MS/MS measurements using MALDI-QIT-ToF are expected to allow structural characterization of unknown components of polyethers.  相似文献   

3.
Tetrathiofulvalene compounds are important components of charge-transfer complexes, which may be applied in various fields of scientific research and practical applications. Some of these compounds cannot be characterized by mass spectrometry. Here, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used for the characterization of tetrathiofulvalenes. The samples could be easily desorbed and ionized to form singly charged ions, and mass spectra with isotopic resolution readily obtained. The mass spectrometric results for 26 compounds have shown that MALDI-TOF is more effective and convenient than other mass spectrometry methods, and resolves the problem of mass spectrometric characterization of tetrathiofulvalene compounds.  相似文献   

4.
5.
A novel method for acquisition and numerical analysis of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectral data is described. The digitized ion current transient from each consecutive laser shot is first acquired and stored independently. Subsequently, statistical correlation parameters between all stored transients are computed. We illustrate the uses of this event-by-event analysis method for studies of sample surface heterogeneity as well as for elucidating the mechanisms of ion formation in MALDI. Other potential applications of the method are also outlined.  相似文献   

6.
Mass spectrometry is widely applied in carbohydrate analysis, but still quantitative evaluation of data is critical due to different ionization efficiencies of the constituents in a mixture. Different size and chemical structure of the analytes cause their uneven distribution in droplets (electrospray ionization, ESI) or matrix spots (matrix-assisted laser desorption/ionization, MALDI). In addition, instrumental parameters affect final ion yields. In order to study and optimize the latter, an equimolar mixture of malto-oligosaccharides (DP1-6) was analyzed using varying target masses for ESI as well as different matrices and laser power for MALDI. The sodium adducts and derivatives for positive ion mode (hydrazones with Girard's T Reagent, GT) and negative ion mode (reductively aminated with o-aminobenzoic acid, oABA) were studied. Negatively charged oABA-labeled malto-oligosaccharides turned out to be unsuitable for quantification of the malto-oligomeric composition. Best agreement was achieved when applying target masses in the range of the highest homolog in the mixture in electrospray ionization ion trap (ESI-IT) (1-2% deviation with GT label or as Na(+) adducts). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) gave best results when the laser power was adjusted significantly over the desorption/ionization threshold (1% deviation with GT label). Both parameters show significant influence on the determined oligomeric composition. Consequently, estimation and even quantitative determination of amounts of oligosaccharides in a mixture can be achieved when the analytes are labeled and the proper instrumental parameters are used.  相似文献   

7.
A new method of matrix-assisted laser desorption/ionization (MALDI) sample preparation using a dual-spray electrospray deposition system is demonstrated and employed for the investigation of gas-phase cationization reactions in the MALDI plume. The dual-spray electrospray system is found to increase the homogeneity of the sample similarly to that of a conventional single-spray electrospray system. The dual-spray electrospray system allows for intimate mixing of separately prepared sample components and results in improved quantitative results. The development of this device also leads to the possibility of mixing sample components prepared in different solvents without the need to be concerned with solvent miscibility.  相似文献   

8.
Surfactant-mediated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been used for the identification of flavonoids from three berry extracts: lowbush blueberry (Vaccinium angustifolium), lingonberry (Vaccinium vitis-idaea), and blackberry (Rubus armeniacus). The addition of the surfactant led to suppression of matrix ions from both alpha-cyano-4-hydroxycinnamic acid (CHCA) and 2',4',6'-trihydroxyacetophenone (THAP). This is the first case of this method being successfully employed with a matrix other than CHCA. It was observed that CHCA led to a great deal of fragmentation of the sugar moiety from glycosides, whereas THAP produced more intact glycoside molecules, and thus leads to better characterization of the flavonoids in a berry sample. The flavonoids were characterized and quantified by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) with UV detection. Although MALDI-TOF-MS did not lead to the identification of as many flavonoids, it did enable us to identify many anthocyanin glycosides. Quantification was achieved and demonstrated that use of the THAP matrix can enable quantification of the intact glycosides with relative standard deviation (RSD) values of less than 10% with surfactant addition. These results are comparable with LC results. MALDI-TOF-MS with THAP matrix thus provided a rapid method for the qualitative screening of these compounds. It took only a few minutes, greatly reducing the analysis time from that in traditional LC/MS methods.  相似文献   

9.
The utility of post-source decay (PSD) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was investigated for the structural analysis of phosphatidylcholine (PC). PC did not produce detectable negative molecular ion from MALDI, but positive ions were observed as both [PC+H](+) and [PC+Na](+). The PSD spectra of the protonated PC species contained only one fragment corresponding to the head group (m/z 184), while the sodiated precursors produced many fragment ions, including those derived from the loss of fatty acids. The loss of fatty acid from the C-1 position (sn-1) of the glycerol backbone was favored over the loss of fatty acid from the C-2 position (sn-2). Ions emanating from the fragmentation of the head group (phosphocholine) included [PC+Na-59](+), [PC+Na-183](+) and [PC+Na-205](+), which corresponded to the loss of trimethylamine (TMA), non-sodiated choline phosphate and sodiated choline phosphate, respectively. Other fragments reflecting the structure of the head group were observed at m/z 183, 146 and 86. The difference in the fragmentation patterns for the PSD of [PC+Na](+) compared to [PC+H](+) is attributed to difference in the binding of Na(+) and H(+). While the proton binds to a negatively charged oxygen of the phosphate group, the sodium ion can be associated with several regions of the PC molecule. Hence, in the sodiated PC, intermolecular interaction of the negatively charged oxygen of the phosphate group, along with sodium association at multiple sites, can lead to a complex and characteristic ion fragmentation pattern. The preferential loss of sn-1 fatty acid group could be explained by the formation of an energetically favorable six-member ring intermediate, as apposed to the five-member ring intermediate formed prior to the loss of sn-2 fatty acid group.  相似文献   

10.
We have employed a light-absorbing electrically conductive polymer as a matrix to determine the molecular mass of small organic molecules using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. This method, which is in contrast to the usual MALDI strategy for matrix selection in which a small molecule matrix is used with a high molecular mass analyte, addresses the problem of matrix interference which limits the usefulness of MALDI-TOF for small molecule analysis. Use of negative ion mode offers advantages for this application. Using this approach, we have obtained clean molecular ion mass spectra of small organic molecules in the mass range 100-300 Da.  相似文献   

11.
A variety of surfactants have been tested as matrix-ion suppressors for the analysis of small molecules by matrix-assisted laser desorption/ionization time-of flight mass spectrometry. Their addition to the common matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) greatly reduces the presence of matrix-related ions when added at the appropriate mole ratio of CHCA/surfactant, while still allowing the analyte signal to be observed. A range of cationic quaternary ammonium surfactants, as well as a neutral and anionic surfactant, was tested for the analysis of phenolics, phenolic acids, peptides and caffeine. It was found that the cationic surfactants, particularly cetyltrimethylammonium bromide (CTAB), were suitable for the analysis of acidic analytes. The anionic surfactant, sodium dodecyl sulfate, showed promise for peptide analysis. For trialanine, the detection limit was observed to be in the 100 femtomole range. The final matrix/surfactant mole ratio was a critical parameter for matrix ion suppression and resulting intensity of analyte signal. It was also found that the mass resolution of analytes was improved by 25-75%. Depth profiling of sample spots, by varying the number of laser shots, revealed that the surfactants tend to migrate toward the top of the droplet during crystallization, and that it is likely that the analyte is also enriched in this surface region. Here, higher analyte/surfactant concentration would reduce matrix-matrix interactions (known to be a source of matrix-derived ions).  相似文献   

12.
Chemical degradation methods combined with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and post-source decay (PSD)-MALDI reflex TOF mass spectrometry (MS) were used to determine the sequence of a peptide branched on to a known peptide backbone. This study was applied to a branched peptide model (derivative of substance P). The branched peptide mimics a digest of a membrane receptor on to which a derivative of substance P was photochemically linked. Chemical degradation based on N-terminal ladder sequencing in combination with MALDI-TOF-MS gave only partial sequence information. Although single PSD mass spectra still remain difficult to interpret unambiguously, PSD-MALDI-TOF-MS was combined with on-target acetylation and H -- D exchange to give a better and successful approach to the unambiguous determination of the complete amino acid side-chain sequence. This study shows the capability of MALDI-TOF-MS to help in characterizing ligand-receptor interactions.  相似文献   

13.
The S-nitrosylation of proteins is involved in the trafficking of nitric oxide (NO) in intra- and extracellular milieus. To establish a mass spectrometric method for identifying this post-translational modification of proteins, a synthetic peptide and transthyretin were S-nitrosylated in vitro and analyzed by electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The intact molecular ion species of nitrosylated compounds was identified in the ESI mass spectrum without elimination of the NO group. However, the labile nature of the S-NO bond was evident when the in-source fragmentation efficiently generated [M + H - 30](+) ions. The decomposition was prominent for multiply charged transthyretin ions with high charge states under ordinary ESI conditions, indicating that the application of minimum nozzle potentials was essential for delineating the stoichiometry of nitrosylation in proteins. With MALDI, the S-NO bond cleavage occurred during the ionization process, and the subsequent reduction generated [M + H - 29](+) ions.  相似文献   

14.
A two-step mass spectrometric method for characterization of phosphopeptides from peptide mixtures is presented. In the first step, phosphopeptide candidates were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) based on their higher relative intensities in negative ion MALDI spectra than in positive ion MALDI spectra. The detection limit for this step was found to be 18 femtomoles or lower in the case of unfractionated in-solution digests of a model phosphoprotein, beta-casein. In the second step, nanoelectrospray tandem mass (nES-MS/MS) spectra of doubly or triply charged precursor ions of these candidate phosphopeptides were obtained using a quadrupole time-of-flight (Q-TOF) mass spectrometer. This step provided information about the phosphorylated residues, and ruled out nonphosphorylated candidates, for these peptides. After [(32)P] labeling and reverse-phase high-performance liquid chromatography (RP-HPLC) to simplify the mixtures and to monitor the efficiency of phosphopeptide identification, we used this method to identify multiple autophosphorylation sites on the PKR-like endoplasmic reticulum kinase (PERK), a recently discovered mammalian stress-response protein.  相似文献   

15.
The use of post-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the structural analysis of ((partly) methyl-esterified) oligogalacturonides (oligoGalA) is described. The fragmentation behavior of purified (un)saturated oligoGalA (degree of polymerization 3-6), methyl-esterified and methyl-glycosydated oligoGalA was studied. General fragmentation patterns are described and used for the elucidation of the positions of methyl esters on partly methyl-esterified oligoGalA. This technique now permits the determination of the position of methyl esters or other substituents on pectic fragments, helping in understanding the mode of action of pectinolytic enzymes.  相似文献   

16.
One problem of matrix-assisted laser desorption ionization coupled to time-of-flight mass spectrometry is the moderate mass accuracy that typically can be obtained in routine applications, Here we report improved mass accuracy for peptides, even when low amounts and complex peptide mixtures are used. A new procedure for preparing matrix surfaces is used, and there is no need to mix the matrix with the sample or to add internal standards. Examples are shown with a mass accuracy better than 50 ppm in a peptide mixture. Peptide mapping as well as sequencing by creating “ragged ends” or “ladder sequencing” should benefit especially from the improved mass accuracy.  相似文献   

17.
Analyses of polysorbate formulations (Tween 20, Tween 40, Tween 60, and Tween 80) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) reveal a complex mixture of oligomers that include polyethylene glycols, polyethylene glycol esters, isosorbide polyethoxylates, sorbitan polyethoxylates, polysorbate monoesters, polysorbate diesters, and sorbitol polyethoxylate esters. The MALDI-TOF mass spectra for these formulations show the presence of sodiated molecules in which the major signals are attributed to the presence of polyethylene glycols, isosorbide polyethoxylates, and sorbitan polyethoxylates. Additionally, the complexity of the spectra was correlated to the constituent fatty acid moieties in the polysorbate formulations. Thus Tween 20 showed the presence of polysorbate monolaurates, polysorbate monomyristates, and polysorbate monopalmitates. Tween 40 contained polysorbate mono- and dipalmitates. Tween 60 contained polysorbate monopalmitates and polysorbate monostearates. For the Tween 80, mass assignment for polysorbate monooleates and polysorbate dioleates was equivocal, because both of these oligomeric series have the same molecular weight as the sorbitan polyethoxylates, and thus the Tween 80 MALDI-TOF spectrum appeared to be the least complicated of the four commercial polysorbate formulations.  相似文献   

18.
The use of matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) for the quantitative determination of phospholipid (PL) molecular species has been problematic, due primarily to the formation of multiple signals (corresponding to the molecular ion and other adducts) for some classes of PL. For example, analysis of phosphatidylcholine (PC) yielded signals that corresponded to protonated and sodiated molecules in the MALDI spectrum. The resulting spectral overlap among various molecular species (e.g. [PC(16:0/18:2) + Na] and [PC(18:2/18:3)]) made it impossible to ascertain their relative amounts using this technique. Other spectral ambiguities existed among different structural isomers, such as PC(18:1/18:1) and PC(18:0/18:2). We determined that molecular species could be resolved by MALDI-TOFMS by first removing the polar head (e.g. phosphocholine) from the phospholipid to effect production of only the sodiated molecules of the corresponding diacylglycerols (DAGs). Analysis of the resulting spectrum allowed unequivocal determination of the molecular species profile of PC from potato tuber and soybean. Estimation of fatty acid composition based on the molecular species determined by MALDI-TOFMS analysis agreed with that from GC-FID analysis. Post-source decay (PSD) was used to resolve standard isomers of PC (e.g. 18:1/18:1 vs. 18:0/18:2). Our results indicated that PSD is a useful approach for resolving structural isomers of PL molecular species.  相似文献   

19.
This study presents matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) as a powerful tool to analyze and characterize oligonucleotides covalently linked to a solid support during their synthesis. The analysis of the fragment ions generated either in negative or positive mode allows direct and easy access to the nucleotide sequence and identification of the internucleosidic linkage. The mechanisms of the fragmentation of the solid-supported oligonucleotides induced by MALDI-TOFMS are discussed. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and laser desorption/ionization (LDI-)TOFMS have been used to characterize Suwannee River humic substances, obtained from the International Humic Substances Society (IHSS), and Armadale soil fulvic acid (ASFA). An array of MALDI matrices were tested for use with humic substances, including alpha-cyano-4-hydroxycinammic acid (CHCA), 2-(4-hydroxyphenylazo)benzoic acid (HABA), 2,5-dihydroxybenzoic acid (DHBA), sinapinic acid, dithranol and norharmane. DHBA yielded the best results, exhibiting superior ionization efficiency, low noise, broad applicability to the analytes of interest, and most importantly producing an abundance of high mass ions, the highest observed being m/z 1848. A number of sample preparation modes were investigated; the overlayer method improved sample/matrix homogeneity and hence shot-to-shot reproducibility. The choice of the matrix, mass ratio of analyte to matrix, and the sample preparation protocol, were found to be the most critical factors governing the quality of the mass spectra. Matrix suppression was greatly enhanced by ensuring good mixing of matrix and analyte in the solid phase, proper optimization of the matrix/analyte ratio, and optimizing delayed extraction to ensure complete matrix-analyte reaction in the plume before ions are moved to the flight tube. A number of common features, in particular specific ions which could not be attributed to the matrices or to contaminants, were present in the spectra of all the humic substances, regardless of origin or operational definition. Additionally, a prominent repeating pattern of peaks separated by 55, 114 and 169 Da was clearly observed in both LDI and MALDI, suggesting that the humic compounds studied here may have quasi-polymeric or oligomeric features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号