首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the performance of monoliths composed of hydroxyethyl methacrylate (HEMA) to which N-methacryloyl-(L)-cysteine methyl ester (MAC) was polymerized for removal of heavy metal ions. Poly(HEMA-MAC) monolith was produced by bulk polymerization. Poly(HEMA-MAC) monolith was characterized by FTIR and scanning electron microscopy (SEM). The poly(HEMA-MAC) monolith with a swelling ratio of 89%, and containing 69.4 μmol MAC/g were used in the adsorption studies. Adsorption capacity of the monolith for the metal ions, i.e., Cu2+, Cd2+, Zn2+, Hg2+, and Pb2+ were investigated in aqueous media containing different amounts of the ions (10–750 mg/L) and at different pH values (3.0–7.0). The maximum adsorption capacities of the poly(HEMA-MAC) monolith were 68.2 mg/g for Zn2+, 129.2 mg/g for Cu2+, 245.8 mg/g for Pb2+, 270.2 mg/g for Hg2+, and 284.0 mg/g for Cd2+. pH significantly affected the adsorption capacity of MAC incorporated monolith. The competitive adsorption capacities were 587 μmol/g for Zn2+, 1646 μmol/g for Cu2+, 687 μmol/g for Pb2+, 929 μmol/g for Hg2+, and 1993 μmol/g for Cd2+. The chelating monolith exhibited the following metal ion affinity sequence on molar basis: Cd2+ > Cu2+ > Hg2+ > Pb2+ > Zn2+. The formation constants of MAC–metal ion complexes have been investigated applying the method of Ruzic. The calculated values of stability constants were 5.28 × 104 L/mol for Cd2+, 4.16 × 104 L/mol for Cu2+, 2.27 × 104 L/mol for Hg2+, 1.98 × 104 L/mol for Pb2+, and 1.25 × 104 L/mol for Zn2+. Stability constants were increased with increasing binding affinity. The chelating monoliths can be easily regenerated by 0.1 M HNO3 with higher effectiveness. These features make poly(HEMA-MAC) monolith a potential adsorbent for heavy metal removal.  相似文献   

2.
Semiautomatic methods are described for the catalytic titrimetric determination of microamounts of silver and mercury(II) using a chloramine-T-selective electrode as monitor. The methods are based on the inhibitory effect of Ag(I) and Hg(II) on the iodide-catalyzed chloramine-T-arsenite and chloramine-T-H2O2 reactions. Microamounts of silver in the range 0.2–200 μg (1 × 10−7−1 × 10−4 M) and of mercury(II) in the range 0.1–200 μg (2.5 × 10−8−5 × 10−5 M) were determined using the chloramine-T-As(III) indicator reaction. Mercury(II) in the range 4–2000 μg (1 × 10−6−5 × 10−4 M) was also determined using the chloramine-T-H2O2 indicator reaction. The accuracy and precision were in the range 0.1–1%.  相似文献   

3.
Quercetin can effectively accumulate at multi-walled carbon nanotubes-paraffin oil paste electrodes (CNTPE) and cause a sensitive anodic peak at around 0.32 V (vs. SCE) in a 0.10 M phosphate buffer solution (pH = 4.0). Under optimized conditions, the anodic peak current is linear to quercetin concentration in the ranges of 2.0 × 10− 9−1.0 × 10− 7 M and 1.0 × 10− 7−2.0 × 10− 5 M, and the regression equations are ip (μA) = 0.0017 + 0.928c (μM, r = 0.999) and ip (μA) = 0.183 + 0.0731c (μM, r = 0.995), respectively. This paste electrode can be regenerated by repetitively cycling in a blank solution for about 2 min. A 1.0 × 10− 6 M quercetin solution is measured for 10 times using the same electrode regenerated after every determination, and the relative standard deviation of the peak current is 1.7%. The method has been applied to the determination of quercetin in hydrolysate product of rutin and the recovery is 99.2–102.6%. In comparison with graphite paste electrode, carbon nanotubes-nujol paste electrode and carbon nanotubes casting film modified glassy carbon electrode, the CNTPE gives higher ratio of signal to background current and better defined voltammetric peak.  相似文献   

4.
In this study a PVC membrane electrode for determination of ketotifen fumarate is reported, where ketotifen tetraphenylborate (Keto-TPB) was used as ion exchanger. The electrode has linear range of 5.6 × 10− 6–1.0 × 10− 2 and 1.0 × 10− 5–1.0 × 10− 2 mol/L, with detection limits 2.37 × 10− 6and 4.60 × 10− 6 mol/L in batch and flow injection analysis (FIA), respectively. The electrodes show a Nernstian slope value (58.40 and 61.50 mV/decade in batch and FIA, respectively), and the response time is very short (≤ 10 s). The potential is nearly stable over the pH range 2.0–8.0. Selectivity coefficient values towards different inorganic cations, sugars and amino acids reflect high selectivity of the prepared electrodes. These are used for determination of Ketotifen using potentiometric titration and standard addition methods in pure samples and its pharmaceutical preparations (Zaditen tablets and syrup). The average recovery values are 99.5 and 99.2% with RSD 1.4 and 1.2% for potentiometric titrations and standard addition methods, respectively. The electrode response at different temperatures was also studied.  相似文献   

5.
Ionophoric, extraction, acidic and hydrophobic properties of 3-(4-tolylazo)phenylboronic acid (TAPBA) were studied. Determined Kd value equals to 36±2, pKa equals to 8.6±0.5. TAPBA extracts dobutamine from water into chloroform and transports it across a bulk chloroform membrane. The recovery is 83% (pH=7.5), the transport rate – (6.5±0.5)×10−7 mol/h. 1H and 13C NMR data confirm the formation of an 1:1 complex between arylboronic acid and catecholamine. TAPBA was used as electrode-active component of plasticized membrane electrodes with cationic and anionic responses to catecholamines and phenolic acids, respectively. For the diethyl sebacate-plasticized membrane, a slope of electrode function to dobutamine is 56±2 mV/decade; the detection limit is 1.3×10−5 mol/l; the linear range – 5×10−5–1×10−2 mol/l; the working pH-range – 4.8–7.6; the response time – 5–10 s. ISE gives incomplete cationic function to less lipophilic catecholamines. The membrane with cationic additive shows an anionic response to caffeic acid in wide pH range.  相似文献   

6.
Two common extraction solvent systems, namely acidified aqueous methanol and acidified aqueous acetone, were used to extract blackberry phenolics, and the antioxidant properties of the recovered extracts were compared. The crude extracts were fractionated into low- and high-molecular-weight phenolics by Sephadex LH-20 column chromatography. The hydrophilic-oxygen radical absorbance capacity (H-ORACFL), ferric reducing antioxidant power (FRAP), and the cellular antioxidant activity (CAA) assays were employed as indices to assess antioxidant capacity of the extracts and their respective fractions. The methanolic solvent system displayed a greater efficiency at extracting anthocyanin and flavonol constituents from the blackberries, while the acetonic solvent system was better at extracting flavan-3-ols and tannins. Anthocyanins were the dominant phenolic class found in the blackberries with 138.7 ± 9.8 mg C3G eq./100 g f.w. when using methanol as the extractant and 114.6 ± 3.4 mg C3G eq./100 g f.w. when using acetone. In terms of overall antioxidant capacity of blackberry phenolics, the acetonic solvent system was superior. Though present only as a small percentage of the total phenolics in each crude extract, the flavan-3-ols (42.37 ± 2.44 and 51.44 ± 3.15 mg/100 g f.w. in MLF and ALF, respectively) and ellagitannins (5.15 ± 0.78 and 9.31 ± 0.63 mg/100 g f.w. in MHF and AHF, respectively) appear to account for the differences in the observed antioxidant activity between the two solvent systems.  相似文献   

7.
Plants have been found useful in treating many human diseases caused by bacteria and viruses. The ability to synthesize compounds by plant secondary metabolism makes them an invaluable source of pharmaceutical and therapeutic products. The present study was designed to evaluate the phytochemical constituents, antioxidant, and anticancer activities of Tribulus terrestris seed extracts on HepG2 cell lines. TPC and TFC contents were 51 ± 0.7 mg GAE/g and 66.5 ± 0.4 mg QE/g, respectively. The antioxidant profile of the T. terrestris revealed that all the extracts have antioxidant potential and display the highest antiradical behavior in the pattern of methanolic > acetonic > chloroform > n-hexane, through DPPH, FRAP, OH radical scavenging, and NO radical scavenging assays. The antioxidant activity explored at the cellular level against H2O2-induced DNA damage showed a dose-dependent antioxidant effect of T. terrestris. Moreover, the methanolic extracts of all plant extracts showed notable thrombolytic potentials, the percentage of clot lysis accounted for T. terrestris was 33%, 27%, 17%, and 6% which indicated the significant clot lysis of methanolic and acetonic extracts in contrast to positive and negative standards. The genotoxicity was assessed through comet assay which exposed that T. terrestris at a low dose (0.5 mg/mL) is considered to be safe for effective treatment. MTT assay using HepG2 cell lines revealed that the highest tested concentration i.e., 100 μg/mL of the methanolic extract resulted in 86% cell viability compared to the control group. In silico study, from 14 selected compounds, three compounds, Heptacosane, Apiol, and Palmitic acid showed an affinity with target protein 51X0. The present findings may serve as a guideline for the standardization and validation of natural drugs containing the T. terrestris as an ingredient.  相似文献   

8.
A catalytic for determination of nanomolar concentrations of Co(II), i.e., oxidation of -adrenaline hydrochloride with H2O2 in alkaline medium, is proposed. The reaction gives a low limit of detection of 2.5 × 10 −9 M Co(II) in the reaction mixture, good reproducibility with a relative standard deviation (R.S.D.) of 4−5% in the Co(II) concentration range 8.0 × 10−9−8.0 × 10−8M and good selectivity. On the basis of this indicator reaction, a catalytic-spectrophotometric method for the determination of cobalt in small urine samples (5.00 ml) was elaborated. The analysis of 17 urine samples, taken from healthy persons of different ages, gave cobalt concentrations in the range 0.20–1.50 μmol 1−1. The R.S.D. for ten replicate analyses of a urine sample with an average cobalt content of 0.63 μmol 1−1 was 5.6%. The reliability of the method was verified by a comparative photometric method (r = 0.9755) and by a determination based on known additions of cobalt (r = 0.9894).  相似文献   

9.
Electroanalytical and chromatographic methodologies have been applied for the determination of pentachlorophenol (PCP) and some of its derivatives in real soil samples contaminated by industrial discharge. The analytes were extracted with hexane from soil samples collected at different points of the site and mixed to produce a representative sample. Square wave voltammetry (SWV) experiments were carried out on either a boron-doped diamond (BDD) electrode or a gold ultramicroelectrode (Au-UME) in an analyte composed by the Britton-Robinson (B-R) buffer at pH 5.5 with the direct addition of proper amounts of the extract. The voltammetric responses revealed an irreversible anodic peak at approximately 0.80 V vs. Ag/AgCl with a peak current showing a linear dependence on PCP concentration. This linear relationship yielded a detection limit (DL) of 2×10−8 mol l−1 (or 5.5 μg l−1) for the BDD electrode and 6.9×10−8 mol l−1 (18.4 μg l−1) for the Au-UME, while the independently measured HPLC detection limit was 1.1×10−8 mol l−1 (3.0 μg l−1). The application of electroanalytical and chromatographic methodologies in the analysis of soil extracts revealed, besides the PCP responses, signals for some related molecules such as o-tetrachlorobenzoquinone (o-chloranil), hexachlorobenzene and tetrachlorophenol. Recovering experiments for PCP showed a concentration of 27.5 mg kg−1 for the electroanalytical determinations and 26.8 mg kg−1 for the HPLC analysis, values exceedingly high if considering that the maximum residue limit established for natural waters by the Brazilian Environmental Agency is 10 μg l−1.  相似文献   

10.
A simple and sensitive label-free colorimetric detection of telomere DNA has been developed. It was based on the color change of gold nanoparticles (AuNPs) due to DNA hybridization. UV–vis spectra and transmission electron microscopy (TEM) were used to investigate the change of AuNPs. Under the optimized conditions, the linear range for determination of telomere DNA was 5.7 × 10−13 to 4.5 × 10−6 mol/L. The detection limit (3σ) of this method has decreased to pico-molar level.  相似文献   

11.
This research focuses on removal of Fe(III) from aqueous solution using chitosan–magnetite nanocomposites as potential sorbent. The presence of nanosized magnetic particles within the nanocomposites was confirmed by TEM and SAED analysis. The particles with diameter 508 μm and 84 μm, follow Frendlich sorption isotherm at 30 °C, and the Frendlich constants (KF, 1/n) have been found to be 5.974 mg g−1, 2.66 and 35.98 mg g−1, 1.385, respectively. Out of various kinetic models, the experimental data for dynamic uptake of Fe(III) is best fitted on ‘pseudo-second order’ kinetic model. The linear nature of plots between log (% sorption) and log (time) is indicative of intra-particle diffusion. For the particles with diameters 508 μm and 84 μm, the value of kid was found to be 1.78 mg l−1 min−0.5 and 2.13 mg l−1 min−0.5. The sorption mean free energy from the Dubinin–Radushkevic isotherm was found to be 7.04 kJ mol−1 indicating chemical nature of sorption. The increase in chitosan content in sorbent particles is found to enhance the Fe(III) uptake. The various thermodynamic parameters have also been evaluated. Finally, the presence of Cu2+ ions in the sorbate is found to decrease the uptake of Fe(III).  相似文献   

12.
The spectral features of the squarylium near-infrared (NIR) dye NN525 in different solutions and its complexation with several metal ions were investigated. The absorbance maximum of the dye is λ=663 nm in methanol. This value matches the output of a commercially available laser diode (650 nm), thus making use of such a source practical for excitation. The emission wavelength of the dye in methanol is λem=670 nm. The addition of either Fe(III) ion or Co(II) ion resulted in fluorescence quenching of the dye. The Stern–Volmer quenching constant, KSV, was calculated from the Stern–Volmer plot to be KSV=2.70×107 M−1 for Co(II) ion. The KSV value for Fe(III) ion could not be established due to the non-linearity of the Stern–Volmer plot and the modified Stern–Volmer plot for this ion. The detection limit is 6.24×10−8 M for Fe(III) ion and 1.55×10−5 M for Co(III) ion. The molar ratio of the metal to the dye was established to be 1:1 for both metal ions. The stability constant, KS, of the metal–dye complex was calculated to be 3.14×106 M−1 for the Fe–dye complex and 2.64×105 M−1 for the Co–dye complex.  相似文献   

13.
Gold nanorods (GNRs) with suitable aspect ratio were synthesized with a template technique and then dispersed in a saturated sodium citrate solution by ultrasonication to form a GNR suspension. A GNR-modified electrode was fabricated using the GNR suspension. The oxidation of dopamine at the GNR/GC electrode exhibited surprisingly high electrocatalytic activity and adsorption-controlled characteristics. Square-wave voltammetry was used to detect dopamine. At the GNR/GC electrode, the linear concentration range of DA is from 1 × 10−8 M to 1 × 10−7 M and the detection limit (s/n = 3) is as low as 5.5 × 10−9 M. The current sensitivity is 3.280 μA/μM, and 1000-fold ascorbic acid (AA) cannot interfere with the determination of DA. All these performances are greatly superior to those of the bare GC electrode.  相似文献   

14.
Mono-/bi-layer Au nanoparticle films with large areas were prepared by the assembly of Au nanoparticles in aqueous colloid at toluene/water interfaces, which can be transferred onto the hydrophilic solid surface and adhere strongly to the substrate without any binding agent. The transferred Au nanoparticle films exhibited satisfactory catalytic performance for electro-oxidizing nitric oxide (NO) in solution, and had a low detection limit (2.7 × 10−8 mol/L), a rapid response time (less than 0.5 s) and a wide linear range (5.0 × 10−8–1.0 × 10−5 mol/L) for the detection of NO in solution. UV–vis spectra, cyclic voltammetry and chronoamperometry were conducted to characterize the prepared Au nanoparticle films.  相似文献   

15.
The mediated oxidation of N-acetyl cysteine (NAC) and glutathione (GL) at the palladized aluminum electrode modified by Prussian blue film (PB/Pd–Al) is described. The catalytic activity of PB/Pd–Al was explored in terms of FeIII[FeIII(CN)6]/FeIII[FeII(CN)6]1− system by taking advantage of the metallic palladium layer inserted between PB film and Al, as an electron-transfer bridge. The best mediated oxidation of NAC and GL on the PB/Pd–Al electrode was achieved in 0.5 M KNO3 + 0.2 M potassium acetate of pH 2. The mechanism and kinetics of the catalytic oxidation reactions of the both compounds were monitored by cyclic voltammetry and chronoamperometry. The charge transfer-rate limiting step as well as overall oxidation reaction of NAC or GL is found to be a one-electron abstraction. The values of transfer coefficients α, catalytic rate constant k and diffusion coefficient D are 0.5, 3.2 × 102 M−1 s−1 and 2.45 × 10−5 cm2 s−1 for NAC and 0.5, 2.1 × 102 M−1 s−1 and 3.7 × 10−5 cm2 s−1 for GL, respectively. The modifying layers on the Pd–Al substrate have reproducible behavior and a high level of stability in the electrolyte solutions. The modified electrode is exploited for hydrodynamic amperometry of NAC and GL. The amperometric calibration graph is linear in concentration ranges 2 × 10−6–40 × 10−6 for NAC and 5 × 10−7–18 × 10−6 M for GL and the detection limits are 5.4 × 10−7 and 4.6 × 10−7 M, respectively.  相似文献   

16.
An indirect catalytic method for the separate microdetermination of oxalate, citrate, and fluoride ions is described. The method is based on the inhibition action of oxalate, citrate, and fluoride ions on the catalytic oxidation reaction of 2,4-diaminophenol-hydrogen peroxide by iron(III).Procedures for the determination of 1.76 × 10−2 to 17.6 × 10−2 μg/ml for oxalate ion, 3.78 × 10−2 to 30.24 × 10−2 μg/ml for citrate ion, and 0.38 to 4.18 μg/ml for fluoride ion are given.Quantities of 1.76 × 10−2 to 17.6 × 10−2 μg/ml for oxalate ion, 3.78 × 10−2 to 30.24 × 10−2 μg/ml for citrate ion, and 0.38 to 4.18 μg/ml for fluoride ion could be determinated with a relative error of about 1–3.5% for oxalate and citrate ions and 1–2% for fluoride ion.  相似文献   

17.
Asymmetrical thin membranes of SrCe0.95Y0.05O3−δ (SCY) were prepared by a conventional and cost-effective dry pressing method. The substrate consisted of SCY, NiO and soluble starch (SS), and the top layer was the SCY. NiO was used as a pore former and soluble starch was used to control the shrinkage of the substrate to match that of the top layer. Crack-free asymmetrical thin membranes with thicknesses of about 50 μm and grain sizes of 5–10 μm were successfully pressed on to the substrates. Hydrogen permeation fluxes (JH2) of these thin membranes were measured under different operating conditions. At 950 °C, JH2 of the 50 μm SCY asymmetrical membrane towards a mixture of 80% H2/He was as high as 7.6 × 10−8 mol/cm2 s, which was about 7 times higher than that of the symmetrical membranes with a thickness of about 620 μm. The hydrogen permeation properties of SCY asymmetrical membranes were investigated and activation energies for hydrogen permeation fluxes were calculated. The slope of the relationship between the hydrogen permeation fluxes and the thickness of the membranes was −0.72, indicating that permeation in SCY asymmetric membranes was controlled by both bulk diffusion and surface reaction in the range investigated.  相似文献   

18.
When heptakis (2,6-di-O-isobutyl)-β-cyclodextrin(DOB-β-CD) is immobilized in a plasticized poly vinyl chloride (PVC) membrane, it extracts tetracycline (TC) from the sample solution into the organic membrane phase to form a complex of DOB-β-CD and TC. Since the complex formation results in an enhancement of fluorescence intensity of TC at 506 nm, the chemical recognition process can be directly translated into an optical signal. The maximum response of the sensitive membrane for TC was obtained in 0.2 mol/l KH2PO4–KOH buffer solution (pH 8.01). In the optimum conditions described, the proposed sensor responds linearly in the measuring range of 2.00×10−6 mol/l to 4.00×10−4 mol/l, and has a detection limit of 8.00×10−7 mol/l. The response time of the sensor is within 2.0 min. In addition to high reproducibility and reversibility, the sensor also exhibits good selectivity over some common pharmaceutical species and some common organic and inorganic compounds.  相似文献   

19.
The preparation and electrochemical characterization of a carbon paste electrode modified with copper(II) hexacyanoferrate(III) (CuHCF) as well as its behavior as electrocatalyst toward the oxidation of N-acetylcysteine were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of N-acetylcysteine were explored using sweep linear voltammetry. The best voltammetric response was observed for a paste composition of 20% (w/w) copper(II) hexacyanoferrate(III) complex, acetate buffer solution at pH of 6.0 as the electrolyte and scan rate of 10 mV s− 1. A linear voltammetric response for N-acetylcysteine was obtained in the concentration range from 1.2 × 10− 4 to 8.3 × 10− 4 mol L− 1, with a detection limit of 6.3 × 10− 5 mol L− 1. The proposed electrode is useful for the quality control and routine analysis of N-acetylcysteine in pharmaceutical formulations.  相似文献   

20.
A rapid, simple and sensitive spectrofluorimetric method for determination of trace amount of bromazepam is developed. In phosphate buffer of pH 7.4. The bromazepam enhance the luminescence intensity of the Eu3+ ion in Eu3+–bromazepam complex at λex = 390 nm. The produced luminescence intensity of Eu3+–bromazepam complex is in proportion to the concentration of bromazepam. The working range for the determination of bromazepam is 2.3 × 10−8 to 6.2 × 10−7 M with detection limit (LoD) and quantitative detection limit (LoQ) of 3 × 10−9 and 1.2 × 10−8 M, respectively. While, the working range, detection limit (LoD) and quantitative detection limit (LoQ) in case of the quantum yield calculations are 3.7 × 10−8 to 3.4 × 10−7 M with of 3.4 × 10−9 and 9.2 × 10−8 M, respectively. The enhancement mechanism of the luminescence intensity in the Eu3+–bromazepam system has been also explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号