首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The preparation of stable colloidal slurries is often difficult in industries where many chemical components are added into the slurries. A critically acclaimed example of such an industry is the chemical mechanical polishing (CMP) industry which involves polishing slurries with several chemical additives. In the present work, the stabilization of a slurry used for CMP of metals is investigated in detail. This high ionic strength slurry has been stabilized using an optimaJ combination of sodium dodecyl sulfate (anionic surfactant) and Tween 80 (nonionic surfactant). The amount of surfactant needed to impart stability has been investigated in this study for two different sizes of abrasive particles. It has been found that the amount of surfactant needed to stabilize the slurry increases as the total surface area per gram of panicles increases. Slurry stabilization has been correlated with particle size measurements. It has been found that the average panicle size of the slurry decreases as the stability of the slurry increases. Stable slurries have been found to have particle sizes close to those of the particles before agglomeration. It is proposed that the stabilized CMP slurries can lead to reduced defects in wafers by preventing agglomeration of panicles.  相似文献   

2.
The electrostatic stabilization of colloidal dispersions is usually considered the domain of polar media only because of the high energetic cost associated with introducing electric charge in nonpolar environments. Nevertheless, some surfactants referred to as "charge control agents" are known to raise the conductivity of liquids with low electric permittivity and to mediate charge stabilization of nonpolar dispersions. Here we study an example of the particularly counterintuitive charging and electrostatic interaction of colloidal particles in a nonpolar solvent caused by nonionic surfactants. PMMA particles in hexane solutions of nonionic sorbitan oleate (Span) surfactants are found to exhibit a field-dependent electrophoretic mobility. Extrapolation to zero field strength yields evidence for large electrostatic surface potentials that decay with increasing surfactant concentration in a fashion reminiscent of electrostatic screening caused by salt in aqueous solutions. The amount of surface charge and screening ions in the nonpolar bulk is further characterized via measurements of the particles' pair interaction energy. The latter is obtained by liquid structure analysis of quasi-2-dimensional equilibrium particle configurations studied with digital video microscopy. In contrast to the behavior reported for systems with ionic surfactants, we observe particle charging and a screened Coulomb type interaction both above and below the surfactant's critical micelle concentration.  相似文献   

3.
The effects of nonionic surfactants OP-10 and OP-30 (polyoxyethylated octyl phenols with 10 and 30 oxyethylene groups, respectively) in surfactant mixtures with ionic surfactants hexadecyltrimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) have been investigated by a conductometric method in conjunction with fluorescence, surface tension, zeta potential, and DLS measurements. The interactions are found to be antagonistic in nature for each of the systems; i.e., micellization of CTAB as well as SDS is hindered on addition of the nonionic surfactants. The antagonism is found to be more prominent in the presence of OP-10 compared to that of OP-30. Two types of mechanistic paths, path A operating below the critical micellar concentration and path B operating beyond the critical micellar concentration of nonionic surfactants, have been suggested. In path A, the retardation in micellization has been attributed to a decrease in monomeric concentration of the ionic surfactants from solution as a result of the formation of a hydrophobic complex between nonionic and ionic surfactants. In path B, the decrease in monomer concentration is due to the solubilization of the ionic surfactant in micelles of the nonionic surfactants in a 1:1 stoichiometric ratio. A theoretical treatment to the interaction in each ionic-nonionic pair yields a positive value of the interaction parameter supporting the concept of antagonism. The formation of the hydrophobic complex is supported by fluorescence and surface tension measurements. A schematic representation of the stabilization of these hydrophobic complexes has been suggested. The association of ionic surfactants by nonionic micelles is suggested by zeta potential and DLS studies.  相似文献   

4.
The phase behavior of aqueous mixtures of the "clouding" polymer ethyl(hydroxyethyl)cellulose (EHEC) mixed with colloidal particles and surfactants has been studied. These types of mixtures are important in many technical formulations. Two types of particles, polystyrene latex and silica, and two types of EHEC, nonmodified EHEC (N-EHEC) and hydrophobically modified EHEC (HM-EHEC), were studied. The EHECs adsorb to both kinds of particles. Both the amount and the type of added surfactant were seen to dramatically influence the partitioning of the particles between the EHEC-rich and EHEC-poor phases of phase-separated mixtures (above the cloud point temperature). Surfactants that are known not to associate with the EHEC backbone, that is, nonionic surfactants and short-chain cationic surfactants, changed the interaction between EHEC and the colloidal particles from attraction to repulsion above a specific surfactant concentration, resulting in a change in the partitioning of the particles from the EHEC-rich to the EHEC-poor phase. No such particle inversion was observed for ionic surfactants that bind to the EHEC backbone. An analysis considering both the binding of surfactant to EHEC and the competitive adsorption of surfactant to the particle surfaces could rationalize all observations, including the large variations observed, among the studied mixtures, in the surfactant concentration required for particle inversion.  相似文献   

5.
The interaction of fluorocarbon‐ containing hydrophobically modified sodium polyacrylic acid (FMPAANa) (0.5 wt%) with various surfactants (anionic, nonionic and cationic) has been investigated by rheological measurements. Different rheological behaviors are displayed for ionic surfactants and nonionic surfactants. Fluorinated surfactants have stronger affinity with polyelectrolyte hydrophobes comparing with hydrogenated surfactants. The hydrophobic association of FMPAANa with a cationic surfactant (CTAB) and a fluorinated nonionic surfactant (FC171) is much stronger than with a nonionic surfactant (NP7. 5) and an anionic surfactant (FC143). Further investigation of the effects of temperature on solution properties shows that the dissociation energy Em is correlated to the strength of the aggregated junctions.  相似文献   

6.
On the basis of the study of synergistic sensitizing effect of mixed ionic and nonionic surfactants on a series of color reactions, the synergistic effect of mixed solubilizers (or dispersing agents) was investigated. The systems examined included the mixture of a surfactant (either ionic and nonionic) with soluble macromolecular compounds (e.g. PVA or arabic gum) or with -cyclodextrin. The mixed solubilizers often performed synergism of solubilization, sensitization and stabilization on the systems studied, and for certain cases the selectivity was also improved.  相似文献   

7.
The effect of the addition of two cationic surfactants of different chain length (decyl and dodecyl trimethylammonium bromide, DeTMABr and DTMABr, respectively) and one anionic surfactant of identical chain length (sodium dodecyl sulfate, SDS) on phase behavior, structure, and macroscopic properties of a bilayer forming nonionic surfactant (Brij 30) has been investigated by means of phase studies, rheology, turbidity measurements, dynamic light scattering, and freeze-fracture transmission electron microscopy. We concentrated on DTMABr because of the generically similar behavior for the other ionic surfactants. It is found that already very small amounts of added ionic surfactant have a very pronounced effect on the phase behavior of these systems. The pure nonionic surfactant forms bilayers and has a tendency for the formation of vesicles which becomes enhanced by charging the bilayer through the incorporation of the ionic surfactant. The presence of the ionic surfactant leads to much more viscous systems, which already at a total surfactant concentration of 150 mM become gel-like. For a given surfactant concentration, the elastic properties of the gels increase largely upon the addition of ionic surfactant. This effect is strongly synergistic, requiring only very small amounts of added ionic surfactant, and the elastic properties pass through a maximum for a content of ionic surfactant of about 3-5 mol %. This behavior can be explained in a self-consistent way by a simple rheological model and by combining it with light scattering data. For the addition of larger amounts, the elastic properties decrease again and the formed vesicles become structurally less defined as one is leaving the range of conditions for forming well-defined vesicles, which are required for forming elastic vesicle gels.  相似文献   

8.
Specific features of surfactant diffusion in micellar systems are described in terms of mobility, i.e., the limiting velocity of a particle under the action of a unit force. Micellar solutions of nonionic and ionic surfactants are analyzed. A relation is established between average surfactant mobility and the mobilities of individual particles. Although micelles have a lower mobility than monomers have, the average mobility of surfactants is shown to increase rather than decrease upon micellization. In parallel, formulas describing diffusion coefficients are derived, with part of the formulas having been available in the literature.  相似文献   

9.
The role of surfactant type in the aggregation and gelation of strawberry-like particles induced by intense shear without any electrolyte addition is investigated. The particles are composed of a rubbery core, partially covered by a plastic shell, and well stabilized by fixed (sulfate) charges in the end group of the polymer chains originating from the initiator. In the absence of any surfactant, after the system passes through a microchannel at a Peclet number equal to 220 and a particle volume fraction equal to 0.15, not only shear-induced gelation but also partial coalescence among the particles occurs. The same shear-induced aggregation/gelation process has been carried out in the presence of an ionic (sulfonate) surfactant or a nonionic (Tween 20) steric surfactant. It is found that for both surfactants shear-induced gelation does occur at low surfactant surface density but the conversion of the primary particles to the clusters constituting the gel decreases as the surfactant surface density increases. When the surfactant surface density increases above certain critical values, shear-induced gelation and eventually even aggregation do not occur any longer. For the sulfonate surfactant, this was explained in the literature by the non-DLVO, short-range repulsive hydration forces generated by the adsorbed surfactant layer. In this work, it is shown that the steric repulsion generated by the adsorbed Tween 20 layer can also protect particles from aggregation under intense shear. Moreover, the nonionic steric surfactant can also protect the strawberry-like particles from coalescence. This implies a decrease in the fractal dimension of the clusters constituting the gel from 2.76 to 2.45, which cannot be achieved using the ionic sulfonate surfactant.  相似文献   

10.
Surfactants of practical interest are invariably mixtures of different types. In this study, mixtures of sugar-based n-dodecyl-beta-D-maltoside with cationic dodecyltrimethylammonium bromide, anionic sodium dodecylsulfate, and nonionic pentaethyleneglycol monododecyl ether in solution, with and without supporting electrolyte, have been studied using surface tension and fluorescence spectroscopic techniques. Interaction parameters and mole fraction of components in mixed micelles were calculated using regular solution theory. The magnitude of interactions between n-dodecyl-beta-D-maltoside and other surfactants followed the order anionic/nonionic > cationic/nonionic > nonionic/nonionic mixtures. Since all surfactants have the same hydrophobic groups, strengths of interactions are attributed to the structures of hydrophilic headgroups. Electrolyte reduced synergism between n-dodecyl-beta-D-maltoside and ionic surfactant due to charge neutralization. Industrial sugar-based surfactant, dodecyl polyglucoside, yielded results similar to that with dodecyl maltoside, implying that tested commercial alkyl polyglucosides are similar to the pure laboratory samples in synergistic interactions with other surfactants. Fluorescence study not only supported the cmc results using tensiometry, but showed that interfaces of all the above mixed micelle/solution interfaces are mildly hydrophobic. Based on these results, an attempt is made to discover the nature of interactions to be a combination of intermolecular potential energies and free energy due to packing of surfactant molecules in micelles.  相似文献   

11.
The influence of concentration of nonionic TRITON X-100 and anionic ATLAS G-3300 surfactants, and pH of medium on the size and zeta-potential of TiO2 particles in the water suspensions has been studied. Suspensions have been prepared by mixing of the titanium dioxide in the suitable mediums at 10 min and 6 h correspondingly. It was established, that the duration of mixing of the suspensions has an essential influence on the dependence of zeta-potential and size of particles versus concentration of surfactant. However, the duration of mixing does not influence the dependence of electrical conductivity and pH of the suspensions on concentration of surfactant. It is shown that anionic ATLAS G-3300 surfactant is more effective stabilizator of aqueous suspensions of titanium dioxide, than nonionic surfactants of TRITON X-100. It is found that hydrophobic interaction has important role in the processes of stabilization of suspensions for nonionic surfactant, and for anionic surfactant--moving of psi(delta)-planes into solution's depth.  相似文献   

12.
The stability and rheology of tricaprylin oil-in-water emulsions containing a mixture of surface-active hydrophilic silica nanoparticles and pure nonionic surfactant molecules are reported and compared with those of emulsions stabilized by each emulsifier alone. The importance of the preparation protocol is highlighted. Addition of particles to a surfactant-stabilized emulsion results in the appearance of a small population of large drops due to coalescence, possibly by bridging of adsorbed particles. Addition of surfactant to a particle-stabilized emulsion surprisingly led to increased coalescence too, although the resistance to creaming increased mainly due to an increase in viscosity. Simultaneous emulsification of particles and surfactant led to synergistic stabilization at intermediate concentrations of surfactant; emulsions completely stable to both creaming and coalescence exist at low overall emulsifier concentration. Using the adsorption isotherm of surfactant on particles and the viscosity and optical density of aqueous particle dispersions, we show that the most stable emulsions are formed from dispersions of flocculated, partially hydrophobic particles. From equilibrium contact angle and oil-water interfacial tension measurements, the calculated free energy of adsorption E of a silica particle to the oil-water interface passes through a maximum with respect to surfactant concentration, in line with the emulsion stability optimum. This results from a competition between the influence of particle hydrophobicity and interfacial tension on the magnitude of E.  相似文献   

13.
 The interaction of a nonionic polymeric surfactant with an anionic surfactant at the oil–water interface has been studied by its effects on the droplet size, stability and rheology of emulsions. Oil-in-water (o/w) emulsions were prepared using isoparaffinic oil and mixtures of a nonionic polymeric surfactant with an anionic surfactant. The macro-molecular surfactant was a graft copolymer with a backbone of polymethyl methacrylate and grafted polyethylene oxide (a graft copolymer with PEO chains of MW=750). The anionic surfactant was sodium dodecyl sulfate (SDS). The stabiliza-tion of the emulsion droplets was found to be different when using one or the other surfactant. The mechanism of stabilization of emulsion droplets by the macro-molecular surfactant is of the steric type while the stabilization by anionic surfactant is of the electrostatic repulsion type. Emulsions stabilized with mixtures present both types of stabilization. Other effects on the preparation and stabilization of emulsions were found to be dependent on properties associated with the surfactant molecular weight such as the Marangoni effect and Gibbs elasticity. The initial droplet size of the emulsions showed a synergistic effect of the surfactant combination, showing a minimum for the mixtures compared to the pure components. Emulsion stability also shows a synergistic interaction of both surfactants. Rheological measurements allow for the estimation of the interparticle interaction when measured as a function of volume fraction. Most of the effects observed can be attributed to the differences in interfacial tension and droplet radius produced by both surfactants and their mixtures. The elastic moduli are well explained on the basis of droplet deformation. Ionic versus steric stabilization produce little difference in the observed rheology, the only important differences observed concerned the extent of the linear viscoelasticity region. Received: 22 November 1996 Accepted: 24 March 1997  相似文献   

14.
Mixed micelle formation and synergistic interactions of binary surfactant combinations of sodium nonylphenol polyoxyethylene ether sulfate (NPES) with typical surfactants such as sodium dodecyl sulfate (SDS), Triton X-100 (TX100), cetyl trimethyl ammonium bromide (CTAB), and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) at 25 degrees C in the presence of NaCl have been investigated. The critical micelle concentration of the binary mixtures has been quantitatively estimated by steady-state fluorescence measurements. The micellar characteristics such as composition, activity coefficients, and mutual interaction parameters have been estimated following different theoretical treatments. Investigation on the micellization and synergistic interaction of NPES with four kinds of surfactants showed that the behavior of the binary mixture deviated from the ideal state. The analysis revealed that the interaction parameter values (beta) varied with variation of solvent composition. Besides the strong electrostatic attraction between the oppositely charged surfactant NPES-CTAB mixture, the interaction between NPES and SDS also showed far more deviation from ideal behavior than that of TX100 and AOT. The reason for the synergism is also discussed and the results show that an ionic and a nonionic surfactant character existed concurrently in NPES due to the combination of a sulfate group and polyoxyethylene as a hydrophilic moiety. Zeta potential and diffusion coefficient measurements of micelles confirmed the synergistic interaction between the binary surfactants.  相似文献   

15.
Colloidal stability of silicon nitride, silicon carbide and boron carbide aqueous slurries used for slurry nebulization inductively coupled plasma atomic emission spectrometry has been investigated in the pH range 2–10 by electrophoretic mobility and particle size measurements, together with sedimentation tests. The mean particle size of silicon nitride and silicon carbide suspensions change with increasing pH showing a maximum at the isoelectric points (pH 7.5 and 5.5 respectively). The particle size distribution of boron carbide slurries remains practically constant and the zeta potential of suspended boron carbide particles shows a small change in the pH range investigated. The silicon nitride and silicon carbide slurries have good stability at pH below 5 and above 8, respectively. Boron carbide slurries show excellent stability in the whole pH range investigated. The time demand for stabilization of the emission line intensities from the start of nebulization strongly depends on the colloidal stability of slurries. Consequently, it is advantageous to nebulize aqueous suspensions with a pH as far from the isoelectric point of the solid as possible and with the ionic strength of the dispersion medium as low as possible. The RSD values of the line intensity measurements determined after 3 min stabilization time decrease with increasing stability of the aqueous slurries.  相似文献   

16.
Carboxyl and amino-functionalized polystyrene latex particles were synthesized by the miniemulsion copolymerization of styrene and acrylic acid or 2-aminoethyl methacrylate hydrochloride (AEMH). The reaction was started by using an oil-soluble initiator, such as 2,2'-azobis(2-methylbutyronitrile) (V-59). The effect of the functional monomer content and type of surfactant (non-ionic versus ionic) on the particle size and particle size distribution was investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). A bimodal particle size distribution was observed for functionalized latex particles prepared in the presence of the non-ionic surfactant (i.e., Lutensol AT-50) when 1 wt % of acrylic acid or 3 wt % of AEMH as a comonomer was employed. The copolymer particle nucleation was studied by using a highly hydrophobic fluorescent dye. From the obtained results, the formation of bimodal particle size distribution may be attributed to a budding-like effect, which takes place during the earlier stage of polymerization and is caused by the additional stabilizing energy originated from the ionic groups of a functional polymer. The reaction mechanism of particle formation in the presence of non-ionic and ionic surfactants has been proposed. The amount of the surface functional groups was determined from polyelectrolyte titration data.  相似文献   

17.
General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.  相似文献   

18.
Effective plastic film deinking could permit the reuse of recycled polymer to produce clear film, reduce solid waste for landfills, reduce raw material demand for polymer production, and aid process economics. In this study, the deinking of a commercial polyethylene film printed with water-based ink was studied using surfactants in the presence of hardness ions (calcium ions) at various pH levels. The electrostatic properties of ink particles in a washing bath were also investigated. Synthetic anionic surfactant or fatty acid soap in the presence of calcium ions at alkaline pH levels was found to be nearly as effective at deinking as cationic, nonionic, or amphoteric surfactants alone. However, adding calcium ions decreases the deinking effectiveness of cationic, nonionic, and amphoteric surfactants. Increasing the length of the ionic surfactant hydrophobe enhances deinking. Zeta potential measurements showed that water-based ink particles in water reach the point of zero charge (PZC) at a pH of about 3.6, above which ink particles are negatively charged, so cationic surfactant tends to adsorb better on the ink than anionic surfactant above the PZC in the absence of calcium. As the cationic surfactant concentration is varied between 0.005 and 25 mM, the zeta potential of the ink particles reverses from negative to positive owing to adsorption of cationic surfactant. For anionic surfactants, added calcium probably forms a bridge between the negatively charged ink and the negatively charged surfactant head groups, which synergizes adsorption of the surfactant and aids deinking. In contrast, calcium competes for adsorption sites with cationic and nonionic surfactants, which inhibits deinking. All the surfactants studied here disperse ink particles effectively in the washing bath above pH 3 except for the ethoxylated amine surfactant.  相似文献   

19.
Importance of micellar kinetics in relation to technological processes   总被引:5,自引:0,他引:5  
The association of many classes of surface-active molecules into micellar aggregates is a well-known phenomenon. Micelles are in dynamic equilibrium, constantly disintegrating and reforming. This relaxation process is characterized by the slow micellar relaxation time constant, tau(2), which is directly related to the micellar stability. Theories of the kinetics of micelle formation and disintegration have been discussed to identify the gaps in our complete understanding of this kinetic process. The micellar stability of sodium dodecyl sulfate micelles has been shown to significantly influence technological processes involving a rapid increase in interfacial area, such as foaming, wetting, emulsification, solubilization, and detergency. First, the available monomers adsorb onto the freshly created interface. Then, additional monomers must be provided by the breakup of micelles. Especially when the free monomer concentration is low, which is the case for many nonionic surfactant solutions, the micellar breakup time is a rate-limiting step in the supply of monomers. The Center for Surface Science & Engineering at the University of Florida has developed methods using stopped flow and pressure jump with optical detection to determine the slow relaxation time of micelles of nonionic surfactants. The results showed that the ionic surfactants such as SDS exhibit slow relaxation times in the range from milliseconds to seconds, whereas nonionic surfactants exhibit slow relaxation times in the range from seconds (for Triton X-100) to minutes (for polyoxyethylene alkyl ethers). The slow relaxation times are much longer for nonionic surfactants than for ionic surfactants, because of the absence of ionic repulsion between the head groups. The observed relaxation times showed a direct correlation with dynamic surface tension and foaming experiments. In conclusion, relaxation time data of surfactant solutions correlate with the dynamic properties of the micellar solutions. Moreover, the results suggest that appropriate micelles with specific stability or tau(2) can be designed by controlling the surfactant structure, concentration, and physicochemical conditions (e.g., salt concentration, temperature, and pressure). One can also tailor micelles by mixing anionic/cationic or ionic/nonionic surfactants for a desired stability to control various technological processes.  相似文献   

20.
We report on the development of a self-consistent field model that describes the competitive adsorption of nonionic alkyl-(ethylene oxide) surfactants and nonionic polymer poly(ethylene oxide) (PEO) from aqueous solutions onto silica. The model explicitly describes the response to the pH and the ionic strength. On an inorganic oxide surface such as silica, the dissociation of the surface depends on the pH. However, salt ions can screen charges on the surface, and hence, the number of dissociated groups also depends on the ionic strength. Furthermore, the solvent quality for the EO groups is a function of the ionic strength. Using our model, we can compute bulk parameters such as the average size of the polymer coil and the surfactant CMC. We can make predictions on the adsorption behavior of either polymers or surfactants, and we have made adsorption isotherms, i.e., calculated the relationship between the surface excess and its corresponding bulk concentration. When we add both polymer and surfactant to our mixture, we can find a surfactant concentration (or, more precisely, a surfactant chemical potential) below which only the polymer will adsorb and above which only the surfactant will adsorb. The corresponding surfactant concentration is called the CSAC. In a first-order approximation, the surfactant chemical potential has the CMC as its upper bound. We can find conditions for which CMC < CSAC . This implies that the chemical potential that the surfactant needs to adsorb is higher than its maximum chemical potential, and hence, the surfactant will not adsorb. One of the main goals of our model is to understand the experimental data from one of our previous articles. We managed to explain most, but unfortunately not all, of the experimental trends. At the end of the article we discuss the possibilities for improving the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号