首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 180 毫秒
1.
胡斌  江祖成 《分析化学》1993,21(10):1139-1143
本文系统研究了氟化电热蒸发/电感耦合等离子体原子发射光谱(ETV-ICP-AES)测定难熔元素的基体效应。与常规气动雾化(PN)-ICP-AES中的基体效应比较,氟化ETV-ICP-AES中的基体效应更小。对难熔基体元素,由于基体和待测元素与氟化剂之间的竞争反应,随着基体浓度的增加,待测元素谱线强度降低;对常见基体元素,由于热循环中基体与待测元素之间的选择挥发,对待测元素的蒸发和传输过程无明显影响  相似文献   

2.
氟化电热蒸发-ICP-AES直接测定生物试样中痕量镧   总被引:1,自引:0,他引:1  
采用聚四氟乙烯(PTFE)为氟化剂,以悬浮体制样ETV-ICP-AES直接测定固体生物试样中的难熔稀土元素La,研究了粒度效应和La的氟化蒸发行为。在优化实验条件下,方法的检出限为2.0ng/同mL,相对标准偏差为4.5%。该方法简便、灵敏,无需进行化学前处理,可用于固体生物试样的直接分析,分析结果与参考值吻合。  相似文献   

3.
氟化电热蒸发/ICP—AES直接测定SiO2中痕量Fe   总被引:1,自引:0,他引:1  
对氟化电热蒸发(FETV)/ICP-AES技术中元素的氟化蒸发行为,基体效应和粒度效应进行了考察,确定了杂质(Fe)与基体(Si)分离的最佳实验条件,本法用于SiO2中痕量Fe的直接测定,有灵敏,简便,试样消耗少和不需化学处理等优点。  相似文献   

4.
FETV—ICP—AES中选择挥发直接测定高纯氧化钇中痕量钛   总被引:2,自引:0,他引:2  
基于氟化电热蒸发过程中发生的元素选择挥发,提出了以聚四氟乙烯(PTFE)沮体为氟化剂的FETV-ICP-AES直接测定高纯氧化钇国痕量钛的新方法。研究了待测元素和基体的氟化蒸发行为;考察了影响待测元素钛蒸发过程的各种因素。在优化实验条件下,方法的检出奶为1.0ng/ml,相对标准偏差为2.3%。本法简便、灵敏、无需进行化学前处理,可用于高纯固体粉末试样中以南钛的直接测定,试样分析回收率大于96%。  相似文献   

5.
FETV-ICP-AES 直接测定中药漏芦中微量稀土元素的研究   总被引:2,自引:0,他引:2  
提出了以聚四氟然悬浮为氟化剂,氟化电热蒸发(FETV)等离子体发射光谱法(ICP-AES)直接测定中药漏芦中微量稀土元素La、Eu、Yb和Y的方法,改进了ETV与ICP之间的气路接口,研究了影响待测元素信号强度的有关因素,在优化实验条件下,方法的检出限为1.0-3.8ng/mL,相对标准偏差为2.7%-4.4%。此法已应用于中药漏芦中微量稀土元素的测定。  相似文献   

6.
氟化电热蒸发—ICP—AES直接测定生物试样中痕量镧   总被引:2,自引:0,他引:2  
采用聚四氟乙烯(PTFE)为氟化剂,以悬浮体制样ETV-ICP-AES直接测定固体生物试样中的难熔稀土元素La,研究了粒度效应和La的氟化蒸发行为。在优化实验条件下,方法的检出限为2.0ng/mL,相对标准偏差为4.5%。该方法简便、灵敏,无需进行化学前处理,可用于固体生物试样的直接分析,分析结果与参考值吻合。  相似文献   

7.
本文以聚四氟乙烯(PTEE)悬浮体为氟化剂,对悬浮体制样ETV-ICP-AES直接测定生物试样中不同挥发性元素锡、铜和镉的蒸发行为,影响因素及分析性能进行了比较研究,得出了相应的规律性。在选定实验条件下,本法测定MO,Cu和Cd的检出限分别为0.43、4.2和141ng/mL,RSD分别为3.8%、4.2%和2.2%。提出的方法已应用于CRM281生物标样分析,结果与参考值吻合。  相似文献   

8.
本文采用聚四氟乙烯(PTFE)为氟化剂,以悬浮体制样,ETV-ICP-AES直接测定生物固体粉末试样中的中等挥发性元素铜。详细研究了试样粒度对分析信号强度的影响,考察了铜在该技术中的蒸发行为以及影响氟化蒸发的主要因素,在优化的实验条件下,本法测定铜的检出限为42pg,相对标准偏差为4.5%(n=10,Cu浓度为0.2μg/mL),本法简单、快速、所得结果与参考值吻合很好。  相似文献   

9.
本文采用聚四氟乙烯为氟化剂,以悬浮体制样,ETV-ICP-AES直接测定生物固体粉末试样中的中等挥发性元素铜。详细研究了试样粒度对分析信号强度的影响,考察了铜在该技术中的蒸发行为以及影响氟化蒸发的主要因素,在优化的实验条件下,本法测定铜的检出限为42pg,相对标准偏差为4.5%,本法简单、快速、所得结果与参考值听合很好。  相似文献   

10.
以聚四氟乙烯(PTFE)悬浮体为氟化剂,肖体制样/氟化辅助电热蒸发(ETV)/ICP-AES直接测定TiO2陶瓷粉末中痕量杂质钇考察了影响基体和等测元素的蒸发过程的各种因素,对比研究了待测元素和基体的氟化蒸发行为,实现了基体和待测元素的预分离,显著降低了基体效应。本法的检出限为0.26μg/L。相对偏差为3.8%(n=5,c=0.5mg/L)。  相似文献   

11.
ETV-ICP-AES是样品电热气化/电感耦合等离子体激发的联用技术[1~7],具有进样效率高并可进行微升级样品分析的特点.ETV-ICP-AES多采用石墨炉或石墨棒蒸发器.因此,蒸发器的结构、形状、升温速率以及温度分布等对分析信号有很大的影响[3,4].本文研究了蒸发器的接口、形状、结构的影响;自行设计了插入式平台,减小死体积,还研究了在载气单向连续流动的情况下,石墨炉内部温度的大致分布,讨论了平台蒸发和管壁蒸发.  相似文献   

12.
A method has been described for the direct determination of Ti, Cu, Mn, Cr and Cd in solid biological samples without any chemical pretreatment by fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry (ETV-ICP-AES) with slurry sampling. A polytetrafluorethylene (PTFE) emulsion was used as a fluorinating reagent to promote the vaporization of the analytes from the graphite furnace. The interface between furnace device and ICP torch and the main factors affecting the analytical signal were investigated systematically. The detection limits for the determination of Ti, Cu, Mn, Cr and Cd are 6.3, 4.7, 10, 13 and 278 ng/mL, respectively; the relative standard deviations are in the range of 1.5 (Mn) ∼4.0% (Cd) after optimization of the operating conditions. The recommended approach has been applied to directly determine the trace elements of interest in the Chinese traditional medicine Loulu and in the solid biological standard reference material (peach leaves, GBW 08501) with satisfactory results. Received: 28 December 1998 / Revised: 9 February 1999 / Accepted: 12 February 1999  相似文献   

13.
In this work, tungsten coil (W-Coil) devices are used as atomizers for electrothermal atomization atomic absorption spectrometry (ETAAS), electrothermal atomization laser excited atomic fluorescence spectrometry (ETA-LEAFS), and electrothermal vaporization inductively coupled plasma atomic emission spectrometry (ETV-ICP-AES). For most cases in ETAAS and ETA-LEAFS, limits of detection (LODs) using the W-Coil are within a factor of ten of those observed with commercial graphite furnace systems. LOD for Cd by W-Coil AAS is 10 pg, while LODs for As, Se, Cr, Sb and Pb by W-Coil LEAFS are 950, 320, 1400, 330, and 160 fg, respectively. The compact W-Coil device makes it an ideal atomizer for portable atomic spectrometry instrumentation, especially when coupled with a miniature charge coupled device spectrometer. Alternatively, the atomizer can be used as an inexpensive, modular add-on to an existing commercial ICP-AES system; and the thermal separation of Pb with interference elements Al, Mn, and Fe is demonstrated.  相似文献   

14.
A method has been described for the direct determination of Ti, Cu, Mn, Cr and Cd in solid biological samples without any chemical pretreatment by fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry (ETV-ICP-AES) with slurry sampling. A polytetrafluorethylene (PTFE) emulsion was used as a fluorinating reagent to promote the vaporization of the analytes from the graphite furnace. The interface between furnace device and ICP torch and the main factors affecting the analytical signal were investigated systematically. The detection limits for the determination of Ti, Cu, Mn, Cr and Cd are 6.3, 4.7, 10, 13 and 278 ng/mL, respectively; the relative standard deviations are in the range of 1.5 (Mn) ∼4.0% (Cd) after optimization of the operating conditions. The recommended approach has been applied to directly determine the trace elements of interest in the Chinese traditional medicine Loulu and in the solid biological standard reference material (peach leaves, GBW 08501) with satisfactory results. Received: 28 December 1998 / Revised: 9 February 1999 / Accepted: 12 February 1999  相似文献   

15.
Summary The potential of furnace techniques and of laser evaporation for the analysis of dry solution residues and of solids by different atomic emission procedures is described. The new one-step FANES technique (furnace atomic nonthermal emission spectrometry) is compared with the two-step procedure ETV-ICP-AES (electrothermal vaporisation—inductively coupled plasma—atomic emission spectrometry). In case of dry solution residues the sensitivity of the FANES is higher (1–2 orders of magnitude) as a result of better discharge conditions (low background) and direct sample introduction, particularly for volatile and moderately volatile substances. For refractory elements the higher gas temperature of the ICP plasma causes better atomisation, which can lead to higher sensitivity of the ETV-ICP-AES. A new Laser-FANES hybride technique is introduced for microanalysis in solid samples and compared with Laser-ICP-AES. The Laser-FANES is shown to combine the advantages of Laser-ETA-AAS (high sensitivity) and of Laser-ICP-AES (multielemental determinations), particularly for volatile and moderately volatile elements.  相似文献   

16.
A laboratory constructed graphite furnace electrothermal vaporizer (GF-ETV) was used for studying transport efficiencies. This device enables collection of the vaporization products that exit the central sampling hole of the horizontal graphite tube. For determination of the transport efficiency between the GF-ETV and the ICP-torch three methods were tested: (1) deposition of the aerosol particles and the vapour of certain elements by mixing the vaporization product with supersaturated steam and subsequent condensation (direct method); (2) dissolution of the deposited sample fraction from the interface components (indirect method); and (3) calculation from line intensities when applying GF-ETV and pneumatic nebulization sample introduction methods using mercury as a reference element. The latter, `mercury reference method' required 100% transport efficiency for mercury with the ETV, which could be approximated with the use of argon as carrier gas (without halocarbon addition). With a 200 cm3/min flow rate of internal argon in the graphite tube, the transport efficiency was between 67 and 76% for medium volatility elements (Cu, Mn and Mg) and between 32 and 38% for volatile elements (Cd and Zn). By adding carbon tetrachloride vapour to the internal argon flow, the transport efficiency increased to 67–73% for the five elements studied.  相似文献   

17.
Chen S  Lu D 《Talanta》2004,64(1):140-144
A low temperature electrothermal vaporization inductively coupled plasma atomic emission spectrometry (ETV-ICP-AES) method was developed for the determination of the refractory yttrium, using 1-(2-pyridylazo)-2-naphthol (PAN) as chemical modifier. The trace yttrium was vaporized as PAN complex into plasma from a graphite furnace at a comparatively low temperature of 1200 °C. The operation conditions were optimized, and the vaporization behavior of Y-PAN chelate and the main factors affecting the determination were investigated in detail. Under the optimized conditions, the detection limit of Y was 0.7 ng ml−1, and the relative standard deviation (R.S.D.) for 0.1 μg ml−1 Y was 4.5% (n=9, v=10 μl). The linear range of calibration curve covered three orders of magnitude. The recommended approach has been applied for analysis of three biological samples with satisfactory results. The accuracy of the method was demonstrated by analyzing two standard reference materials.  相似文献   

18.
本文以电热蒸发电感耦合等离子体质谱(ETV-ICP-MS)为手段,探讨了Cr、Ni、Zr、Nb和Yb在石墨炉中的蒸发/原子化机理;比较了不同化学改进剂存在条件下,Cr、Ni、Zr、Nb和Yb的蒸发行为和在石墨炉原子吸收(GFAAS)中的原子化行为;考察了石墨炉温度和ICP功率等实验参数对上述元素发射强度及轮廓的影响.结果表明,Pd和Mg化合物的存在对Cr、Ni、Zr、Nb和Yb的蒸发/原子化行为没有明显的化学改进作用;然而,以聚四氟乙烯(PTFE)为化学改进剂时,可显著改善Cr、Ni、Zr、Nb和Yb的蒸发行为,避免难熔碳化物的形成,降低待测物的蒸发温度;对Cr和Ni的GFAAS信号强度略有增强;但是,由于Yb、Nb和Zr氟化物的离解键能很高,难以离解/原子化,PTFE的存在反而降低了Yb、Nb和Zr在GFAAS中的信号强度.  相似文献   

19.
A system is described in which a graphite furnace electrothermal vaporization device is employed for the introduction of microlitre liquid sample into an inductively coupled argon plasma. The technique provides a picogram detection limit and an adequate precision with a relative standard deviation of 4%. Mechanism of analyte condensation in transport process is explored. As an application, the technique combined with DDTC/CCl4 extraction is used to enrich and determine non- rare earth impurities in highly pure La2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号