共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
3.
微通道内气体流动的三维效应 总被引:1,自引:0,他引:1
本文使用直接模拟Monte carlo法对三维直微通道内的气体流动进行了数值模拟,对比了不同截面形状的通道 不同驱动压差的情况,探讨了截面形状对微通道内气体流动三维效应的影响以及三维效应对流量-压差关系的影响。 相似文献
4.
5.
自然水体不同组分光谱之间存在复杂的耦合作用机制,由此导致水体光学特性的高度复杂性,给水质参数遥感反演带来了很大的不确定性,目前对此缺乏系统性认识。基于水体光学Monte Carlo高光谱模拟,研究了典型可遥感水质参数叶绿素a(Chl.a)、总悬浮物(TSM)与黄色物质(CDOM)光谱特征之间的耦合效应。结果表明:水体组分之间的光学影响具有不对等性;Chl.a与CDOM的存在不影响TSM信息提取时特征波段的选择;由Chl.a主导的水体对TSM的信息提取影响甚微,而TSM对Chl.a反射光谱产生的影响非常显著。随着TSM浓度不断增加,Chl.a的浓度对反射率的响应不断减弱,当TSM浓度达到一定水平时,Chl.a的反射光谱对其浓度的变化完全失去响应。即使在Chl.a敏感的特征波段670 nm,当TSM较高时,其光学特性可完全湮没Chl.a的光谱响应,使得在高浓度TSM的水体中提取Chl.a的浓度信息非常困难。CDOM的存在使得蓝绿波段比值算法在Chl.a在中高浓度时失效;由TSM主导的水体比由Chl.a主导的水体对CDOM的光学影响更为显著,TSM对于短波区域CDOM的光学特性具有更强的抑制性。研究结果可为水质遥感波段的选取、水体组分反演算法的适用浓度范围及水色卫星传感器的波段设置等方面提供了理论基础,尤其对于二类水体水质遥感的发展具有较大的促进作用。 相似文献
6.
7.
8.
9.
H_2-N_2混合气体电容性耦合射频放电在有机低介电系数材料刻蚀中具潜在研究意义.采用paxticle-incell/Monte Carlo模型模拟了双频(13.56 MHz/27.12 MHz)电压源分别接在结构对称的两个电极上的H_2-N_2容性耦合等离子体特征,研究了其电非对称效应.模拟结果表明,通过调节两谐波间的相位角θ,可以改变其电场、等离子体密度、离子流密度的轴向分布及离子轰击电极的能量分布.当相位角θ为0°时,低频电极(晶片)附近主要离子(H_3~+)的密度最小,离子(H_3~+,H_2~+,H~+)轰击低频电极的流密度及平均能量最高;当θ从0°变化90°时,低频电极的自偏压从-103V到106V近似线性增加,轰击电极的离子流密度变化约±18%,H~+离子轰击低频电极的最大能量约减小2.5倍,轰击电极的平均能量约变化2倍,表明氢离子能量和离子流几乎能独立控制. 相似文献
10.
11.
In a three-sphere system, the middle sphere is acted upon by two opposite depletion forces from the other two spheres. It is found that, in this system, the two depletion forces are coupled with each other and result in a strengthened depletion force. So the difference of the depletion forces of the three-sphere system and its corresponding two two-sphere systems is introduced to describe the coupling effect of the depletion interactions. The numerical results obtained by Monte-Carlo simulations show that this coupling effect is affected by both the concentration of small spheres and the geometrical confinement. Meanwhile, it is also found that the mechanisms of the coupling effect and the effect on the depletion force from the geometry factor are the same. 相似文献
12.
Effects of unsymmetrical geometric confinements on depletion interactions in colloidal suspensions 下载免费PDF全文
The depletion interactions between two large-spheres immersed in a fluid of small spheres under unsymmetrical geometrical confinement are studied through the acceptance ratio method. The numerical results show that no matter whether the volume fraction is large or small, both the depletion potential and depletion force are affected by the presence of the two plates; the closer the two large spheres are to the plate, the larger the effects of the unsymmetrical confinements. 相似文献
13.
Acceptance ratio method, which has been used to calculate the depletion potential in binary hard-sphere mixtures, is extended to the computation of the depletion potential of non-rigid particle systems. The repulsive part of the Lennard-Jones pair potential is used as the direct pair potential between the non-rigid particles. The depletion potential between two big spheres immersed in a suspension of small spheres is determined with the acceptance ratio method through the application of Monte Carlo simulation. In order to check the validity of this method, our results are compared with those obtained by the Asakura-Oosawa approximation, and by Varial expansion approach, and by molecular dynamics simulation. The total effective potential and the depth of its potential well are computed for various softness parameters of the direct pair potential. 相似文献
14.
K.V. Deshmukh D.C. Haworth 《Journal of Quantitative Spectroscopy & Radiative Transfer》2008,109(14):2391-2400
An important issue in chemically reacting turbulent flows is the interaction between turbulence and radiation (TRI), which arises from highly nonlinear coupling between fluctuations in temperature and species composition of the flow field with the fluctuations of radiative intensity. Here direct numerical simulation (DNS) has been employed to investigate TRI in canonical nonpremixed systems in three-dimensional geometries. A photon Monte Carlo method has been used to solve the radiative transfer equation (RTE), which has been coupled with the flow solver. Radiation properties employed here correspond to a nonscattering fictitious gray gas with a Planck-mean absorption coefficient, which mimics that of typical hydrocarbon-air combustion products. Individual contributions of emission and absorption TRI have been isolated and quantified. The temperature self-correlation, the absorption coefficient-Planck function correlation, and the absorption coefficient-intensity correlation have been examined for intermediate-to-large values of the optical thickness, and contributions from all three correlations were found significant but the relative importance of their contribution varies with optical thickness. 相似文献
15.
Effects of electrostatic interactions and geometrical confinements on depletion interactions in charged colloidal system 下载免费PDF全文
In a charged colloidal system, the influence on depletion
interaction between two like-charged macro-ions is studied through
Monte Carlo simulation in this paper. The numerical results show
that this depletion force is affected by both the electrostatic
interactions between charged spheres and charged plates and by the
geometrical factor of the two charged plates, and they further
indicate that the influence of geometrical confinement on the
depletion interaction is larger than that of electrostatic
potential. 相似文献
16.
A. V. Myshlyavtsev J. L. Sales G. Zgrablich V. P. Zhdanov 《Journal of statistical physics》1990,58(5-6):1029-1039
Thermal desorption spectra are calculated for a one-dimensional chain and for a two-dimensional square lattice using the transfer-matrix technique and Monte Carlo simulations. Lateral interactions of adsorbed particles cause a splitting of spectra. The repulsive three-body interactions are shown to lead to an inequality of the integral intensities of the thermal desorption peaks. 相似文献
17.
18.
In this article, we employ the classical Monte Carlo approach to study the magnetic properties of graphene system. We analyze the ground-state phase diagrams in the presence of external magnetic and crystal fields under effect of the exchange interactions. The critical temperature is deduced. It is proven that the model exhibits the second-order phase transitions at the transition temperature. The total magnetization with the exchange interactions has studied under the temperatures effect. The total magnetization with the crystal field has been established under effect of exchange interactions and temperatures effect. The magnetic hysteresis cycles of graphene system is deduced under effect of temperatures and crystal field. The observations are in good agreement with related experiments and the other theoretical results. It is proven that the graphene system exhibits the superparamagnetic at the transition temperature and a specific value of reduced crystal field. 相似文献