首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An undirected graph G = (V, E) is called \mathbbZ3{\mathbb{Z}_3}-connected if for all b: V ? \mathbbZ3{b: V \rightarrow \mathbb{Z}_3} with ?v ? Vb(v)=0{\sum_{v \in V}b(v)=0}, an orientation D = (V, A) of G has a \mathbbZ3{\mathbb{Z}_3}-valued nowhere-zero flow f: A? \mathbbZ3-{0}{f: A\rightarrow \mathbb{Z}_3-\{0\}} such that ?e ? d+(v)f(e)-?e ? d-(v)f(e)=b(v){\sum_{e \in \delta^+(v)}f(e)-\sum_{e \in \delta^-(v)}f(e)=b(v)} for all v ? V{v \in V}. We show that all 4-edge-connected HHD-free graphs are \mathbbZ3{\mathbb{Z}_3}-connected. This extends the result due to Lai (Graphs Comb 16:165–176, 2000), which proves the \mathbbZ3{\mathbb{Z}_3}-connectivity for 4-edge-connected chordal graphs.  相似文献   

2.
Let L=?Δ+|ξ|2 be the harmonic oscillator on $\mathbb{R}^{n}Let L=−Δ+|ξ|2 be the harmonic oscillator on \mathbbRn\mathbb{R}^{n} , with the associated Riesz transforms R2j−1=(∂/∂ξj)L−1/2,R2jjL−1/2. We give a shorter proof of a recent result of Harboure, de Rosa, Segovia, Torrea: For 1<p<∞ and a dimension free constant Cp,
||(?k=12n|Rk(f)|2)1/2||Lp(\mathbbRn,dx)\leqslant Cp||f||Lp(\mathbbRn,dx).\bigg\Vert \bigg(\sum_{k=1}^{2n}\vert R_{k}(f)\vert ^{2}\bigg)^{{1}/{2}}\bigg\Vert _{L^{p}(\mathbb{R}^{n},\mathrm{d}\xi )}\leqslant C_{p}\Vert f\Vert _{L^{p}(\mathbb{R}^{n},\mathrm{d}\xi )}.  相似文献   

3.
Let f be an endomorphism of \mathbbC\mathbbPk{\mathbb{C}\mathbb{P}^k} and ν be an f-invariant measure with positive Lyapunov exponents (λ 1, . . . , λ k ). We prove a lower bound for the pointwise dimension of ν in terms of the degree of f, the exponents of ν and the entropy of ν. In particular our result can be applied for the maximal entropy measure μ. When k = 2, it implies that the Hausdorff dimension of μ is estimated by dimHm 3 [(log d)/(l1)] + [(log d)/(l2)]{{\rm dim}_\mathcal{H}\mu \geq {{\rm log} d \over \lambda_1} + {{\rm log} d \over \lambda_2}}, which is half of the conjectured formula. Our method for proving these results consists in studying the distribution of the ν-generic inverse branches of f n in \mathbbC\mathbbPk{\mathbb{C}\mathbb{P}^k} . Our tools are a volume growth estimate for the bounded holomorphic polydiscs in \mathbbC\mathbbPk{\mathbb{C}\mathbb{P}^k} and a normalization theorem for the ν-generic inverse branches of f n .  相似文献   

4.
In [GW1] we began an investigation of the following general question. Let L 1, . . . , L m be a system of linear forms in d variables on Fnp{F^n_p}, and let A be a subset of Fnp{F^n_p} of positive density. Under what circumstances can one prove that A contains roughly the same number of m-tuples L 1(x 1, . . . , x d ), . . . , L m (x 1, . . . , x d ) with x1,?, xd ? \mathbb Fnp{x_1,\ldots, x_d \in {\mathbb F}^n_p} as a typical random set of the same density? Experience with arithmetic progressions suggests that an appropriate assumption is that ||A - d1||Uk{||A - \delta 1||_{U{^k}}} should be small, where we have written A for the characteristic function of the set A, δ is the density of A, k is some parameter that depends on the linear forms L 1, . . . , L m , and || ·||Uk{|| \cdot ||_U{^k}} is the kth uniformity norm. The question we investigated was how k depends on L 1, . . . , L m . Our main result was that there were systems of forms where k could be taken to be 2 even though there was no simple proof of this fact using the Cauchy–Schwarz inequality. Based on this result and its proof, we conjectured that uniformity of degree k − 1 is a sufficient condition if and only if the kth powers of the linear forms are linearly independent. In this paper we prove this conjecture, provided only that p is sufficiently large. (It is easy to see that some such restriction is needed.) This result represents one of the first applications of the recent inverse theorem for the U k norm over Fnp{F^n_p} by Bergelson, Tao and Ziegler [TZ2], [BTZ]. We combine this result with some abstract arguments in order to prove that a bounded function can be expressed as a sum of polynomial phases and a part that is small in the appropriate uniformity norm. The precise form of this decomposition theorem is critical to our proof, and the theorem itself may be of independent interest.  相似文献   

5.
Let ${\mathcal{P}_{d,n}}Let Pd,n{\mathcal{P}_{d,n}} denote the space of all real polynomials of degree at most d on \mathbbRn{\mathbb{R}^n} . We prove a new estimate for the logarithmic measure of the sublevel set of a polynomial P ? Pd,1{P\in \mathcal{P}_{d,1}} . Using this estimate, we prove that
supP ? Pd,n| p.v\mathbbRneiP(x)\fracW(x/|x|)|x|ndx| £ c log d (||W||L logL(Sn-1)+1),\mathop{\rm sup}\limits_ {P \in \mathcal{P}_{d,n}}\left| p.v.\int_{\mathbb{R}^{n}}{e^{iP(x)}}{\frac{\Omega(x/|x|)}{|x|^n}dx}\right | \leq c\,{\rm log}\,d\,(||\Omega||_L \log L(S^{n-1})+1),  相似文献   

6.
Let ${\mathbb {F}}Let \mathbb F{\mathbb {F}} a finite field. We show that the universal characteristic factor for the Gowers–Host–Kra uniformity seminorm U k (X) for an ergodic action (Tg)g ? \mathbb Fw{(T_{g})_{{g} \in \mathbb {F}^{\omega}}} of the infinite abelian group \mathbb Fw{\mathbb {F}^{\omega}} on a probability space X = (X, B, m){X = (X, \mathcal {B}, \mu)} is generated by phase polynomials f: X ? S1{\phi : X \to S^{1}} of degree less than C(k) on X, where C(k) depends only on k. In the case where k £ char(\mathbb F){k \leq {\rm char}(\mathbb {F})} we obtain the sharp result C(k) = k. This is a finite field counterpart of an analogous result for \mathbb Z{\mathbb {Z}} by Host and Kra [HK]. In a companion paper [TZ] to this paper, we shall combine this result with a correspondence principle to establish the inverse theorem for the Gowers norm in finite fields in the high characteristic case k £ char(\mathbb F){k \leq {\rm char}(\mathbb {F})} , with a partial result in low characteristic.  相似文献   

7.
We solve the truncated complex moment problem for measures supported on the variety K o \mathcal{K}\equiv { z ? \in C: z [(z)\tilde]\widetilde{z} = A+Bz+C [(z)\tilde]\widetilde{z} +Dz 2 ,D 1 \neq 0}. Given a doubly indexed finite sequence of complex numbers g o g(2n):g00,g01,g10,?,g0,2n,g1,2n-1,?,g2n-1,1,g2n,0 \gamma\equiv\gamma^{(2n)}:\gamma_{00},\gamma_{01},\gamma_{10},\ldots,\gamma_{0,2n},\gamma_{1,2n-1},\ldots,\gamma_{2n-1,1},\gamma_{2n,0} , there exists a positive Borel measure m\mu supported in K \mathcal{K} such that gij=ò[`(z)]izj dm (0 £ 1+j £ 2n) \gamma_{ij}=\int\overline{z}^{i}z^{j}\,d\mu\,(0\leq1+j\leq2n) if and only if the moment matrix M(n)( g\gamma ) is positive, recursively generated, with a column dependence relation Z [(Z)\tilde]\widetilde{Z} = A1+BZ +C [(Z)\tilde]\widetilde{Z} +DZ 2, and card V(g) 3\mathcal{V}(\gamma)\geq rank M(n), where V(g)\mathcal{V}(\gamma) is the variety associated to g \gamma . The last condition may be replaced by the condition that there exists a complex number gn,n+1 \gamma_{n,n+1} satisfying gn+1,n o [`(g)]n,n+1=Agn,n-1+Bgn,n+Cgn+1,n-1+Dgn,n+1 \gamma_{n+1,n}\equiv\overline{\gamma}_{n,n+1}=A\gamma_{n,n-1}+B\gamma_{n,n}+C\gamma_{n+1,n-1}+D\gamma_{n,n+1} . We combine these results with a recent theorem of J. Stochel to solve the full complex moment problem for K \mathcal{K} , and we illustrate the connection between the truncated and full moment problems for other varieties as well, including the variety z k = p(z, [(Z)\tilde] \widetilde{Z} ), deg p < k.  相似文献   

8.
We show that if A is a closed analytic subset of \mathbbPn{\mathbb{P}^n} of pure codimension q then Hi(\mathbbPn\ A,F){H^i(\mathbb{P}^n{\setminus} A,{\mathcal F})} are finite dimensional for every coherent algebraic sheaf F{{\mathcal F}} and every i 3 n-[\fracn-1q]{i\geq n-\left[\frac{n-1}{q}\right]} . If n-1 3 2q we show that Hn-2(\mathbbPn\ A,F)=0{n-1\geq 2q\,{\rm we show that}\, H^{n-2}(\mathbb{P}^n{\setminus} A,{\mathcal F})=0} .  相似文献   

9.
In 1976, Helleseth conjectured that two binary m-sequences of length 2 m − 1 can not have a three-valued crosscorrelation function when m is a power of 2. We show that this conjecture is true when −1 is a correlation value. In other words, if C1,k{{\mathcal{C}}_{1,k}} is the cyclic code of length 2 m − 1 with two zeros α, α k , where α is a primitive element of \mathbbF2m{{\mathbb{F}}_{2^m}} and gcd(k, 2 m − 1) = 1, then its dual C1,k^{{\mathcal{C}}_{1,k}^{\perp}} can not have three weights when m is a power of 2.  相似文献   

10.
The holomorphic functions of several complex variables are closely related to the continuously differentiable solutions $f : {\mathbb{R}}^{2n} \mapsto {\mathbb{C}}_{n}$f : {\mathbb{R}}^{2n} \mapsto {\mathbb{C}}_{n} of the so called isotonic system
?x1 + i [(f)\tilde] ?x 2 = 0\partial _{\underbar{x}_1 } + i \tilde{f} \mathop{\partial _{\underbar{x} _2 } = 0}  相似文献   

11.
We consider the space A(\mathbbT)A(\mathbb{T}) of all continuous functions f on the circle \mathbbT\mathbb{T} such that the sequence of Fourier coefficients [^(f)] = { [^(f)]( k ), k ? \mathbbZ }\hat f = \left\{ {\hat f\left( k \right), k \in \mathbb{Z}} \right\} belongs to l 1(ℤ). The norm on A(\mathbbT)A(\mathbb{T}) is defined by || f ||A(\mathbbT) = || [^(f)] ||l1 (\mathbbZ)\left\| f \right\|_{A(\mathbb{T})} = \left\| {\hat f} \right\|_{l^1 (\mathbb{Z})}. According to the well-known Beurling-Helson theorem, if f:\mathbbT ? \mathbbT\phi :\mathbb{T} \to \mathbb{T} is a continuous mapping such that || einf ||A(\mathbbT) = O(1)\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = O(1), n ∈ ℤ then φ is linear. It was conjectured by Kahane that the same conclusion about φ is true under the assumption that || einf ||A(\mathbbT) = o( log| n | )\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\log \left| n \right|} \right). We show that if $\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right)$\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right), then φ is linear.  相似文献   

12.
The single 2 dilation wavelet multipliers in one-dimensional case and single A-dilation (where A is any expansive matrix with integer entries and |detA| = 2) wavelet multipliers in twodimensional case were completely characterized by Wutam Consortium (1998) and Li Z., et al. (2010). But there exist no results on multivariate wavelet multipliers corresponding to integer expansive dilation matrix with the absolute value of determinant not 2 in L 2(ℝ2). In this paper, we choose $2I_2 = \left( {{*{20}c} 2 & 0 \\ 0 & 2 \\ } \right)$2I_2 = \left( {\begin{array}{*{20}c} 2 & 0 \\ 0 & 2 \\ \end{array} } \right) as the dilation matrix and consider the 2I 2-dilation multivariate wavelet Φ = {ψ 1, ψ 2, ψ 3}(which is called a dyadic bivariate wavelet) multipliers. Here we call a measurable function family f = {f 1, f 2, f 3} a dyadic bivariate wavelet multiplier if Y1 = { F - 1 ( f1 [^(y1 )] ),F - 1 ( f2 [^(y2 )] ),F - 1 ( f3 [^(y3 )] ) }\Psi _1 = \left\{ {\mathcal{F}^{ - 1} \left( {f_1 \widehat{\psi _1 }} \right),\mathcal{F}^{ - 1} \left( {f_2 \widehat{\psi _2 }} \right),\mathcal{F}^{ - 1} \left( {f_3 \widehat{\psi _3 }} \right)} \right\} is a dyadic bivariate wavelet for any dyadic bivariate wavelet Φ = {ψ 1, ψ 2, ψ 3}, where [^(f)]\hat f and F −1 denote the Fourier transform and the inverse transform of function f respectively. We study dyadic bivariate wavelet multipliers, and give some conditions for dyadic bivariate wavelet multipliers. We also give concrete forms of linear phases of dyadic MRA bivariate wavelets.  相似文献   

13.
We study the spectrum σ(M) of the multipliers M which commute with the translations on weighted spaces ${L_{\omega}^{2}(\mathbb{R})}We study the spectrum σ(M) of the multipliers M which commute with the translations on weighted spaces Lw2(\mathbbR){L_{\omega}^{2}(\mathbb{R})} For operators M in the algebra generated by the convolutions with f ? Cc(\mathbb R){\phi \in {C_c(\mathbb {R})}} we show that [`(m(W))] = s(M){\overline{\mu(\Omega)} = \sigma(M)}, where the set Ω is determined by the spectrum of the shift S and μ is the symbol of M. For the general multipliers M we establish that [`(m(W))]{\overline{\mu(\Omega)}} is included in σ(M). A generalization of these results is given for the weighted spaces L2w(\mathbb Rk){L^2_{\omega}(\mathbb {R}^{k})} where the weight ω has a special form.  相似文献   

14.
Let \mathbbC+ : = {s ? \mathbbC    |     Re(s) 3 0}{{\mathbb{C}}}_{+} := \{s \in {{\mathbb{C}}}\quad | \quad {\rm Re}(s) \geq 0\} and let A\mathcal{A} denote the Banach algebra
A = { s( ? \mathbbC+ ) ? [^(f)]a (s) + ?k = 0 fk e - stk | lfa ? L1 (0,¥),(fk )k 3 0 ? l1, 0 = t0 < t1 < t2 < ? }{{{\mathcal{A}}}} = \left\{ s( \in {{{\mathbb{C}}}}_ + ) \mapsto \hat{f}_a (s) + \sum\limits_{k = 0}^\infty {f_k e^{ - st_k }}\bigg | \bigg.{\begin{array}{l}{f_a \in L^1 (0,\infty ),(f_k )_{k \geq 0} \in \ell^{1}, } \cr {{0 = t_0 < t_1 < t_2 < \ldots}} \end{array}} \right\}  相似文献   

15.
Let L p , 1 ≤ p< ∞, be the space of 2π-periodic functions f with the norm || f ||p = ( ò - pp | f |p )1 \mathord
/ \vphantom 1 p p {\left\| f \right\|_p} = {\left( {\int\limits_{ - \pi }^\pi {{{\left| f \right|}^p}} } \right)^{{1 \mathord{\left/{\vphantom {1 p}} \right.} p}}} , and let C = L be the space of continuous 2π-periodic functions with the norm || f || = || f || = maxe ? \mathbbR | f(x) | {\left\| f \right\|_\infty } = \left\| f \right\| = \mathop {\max }\limits_{e \in \mathbb{R}} \left| {f(x)} \right| . Let CP be the subspace of C with a seminorm P invariant with respect to translation and such that P(f) \leqslant M|| f || P(f) \leqslant M\left\| f \right\| for every fC. By ?k = 0 Ak (f) \sum\limits_{k = 0}^\infty {{A_k}} (f) denote the Fourier series of the function f, and let l = { lk }k = 0 \lambda = \left\{ {{\lambda_k}} \right\}_{k = 0}^\infty be a sequence of real numbers for which ?k = 0 lk Ak(f) \sum\limits_{k = 0}^\infty {{\lambda_k}} {A_k}(f) is the Fourier series of a certain function f λL p . The paper considers questions related to approximating the function f λ by its Fourier sums S n (f λ) on a point set and in the spaces L p and CP. Estimates for || fl - Sn( fl ) ||p {\left\| {{f_\lambda } - {S_n}\left( {{f_\lambda }} \right)} \right\|_p} and P(f λS n (f λ)) are obtained by using the structural characteristics (the best approximations and the moduli of continuity) of the functions f and f λ. As a rule, the essential part of deviation is estimated with the use of the structural characteristics of the function f. Bibliography: 11 titles.  相似文献   

16.
For any analytic self-map j{\varphi} of {z : |z| <  1} we give four separate conditions, each of which is necessary and sufficient for the composition operator Cj{C_{\varphi}} to be closed-range on the Bloch space B{\mathcal{B}} . Among these conditions are some that appear in the literature, where we provide new proofs. We further show that if Cj{C_{\varphi}} is closed-range on the Bergman space \mathbbA2{\mathbb{A}^2} , then it is closed-range on B{\mathcal{B}} , but that the converse of this fails with a vengeance. Our analysis involves an extension of the Julia-Carathéodory Theorem.  相似文献   

17.
Let \frak X, \frak F,\frak X\subseteqq \frak F\frak {X}, \frak {F},\frak {X}\subseteqq \frak {F}, be non-trivial Fitting classes of finite soluble groups such that G\frak XG_{\frak {X}} is an \frak X\frak {X}-injector of G for all G ? \frak FG\in \frak {F}. Then \frak X\frak {X} is called \frak F\frak {F}-normal. If \frak F=\frak Sp\frak {F}=\frak {S}_{\pi }, it is known that (1) \frak X\frak {X} is \frak F\frak {F}-normal precisely when \frak X*=\frak F*\frak {X}^{\ast }=\frak {F}^{\ast }, and consequently (2) \frak F í \frak X\frak N\frak {F}\subseteq \frak {X}\frak {N} implies \frak X*=\frak F*\frak {X}^{\ast }=\frak {F}^{\ast }, and (3) there is a unique smallest \frak F\frak {F}-normal Fitting class. These assertions are not true in general. We show that there are Fitting classes \frak F\not = \frak Sp\frak {F}\not =\frak {S}_{\pi } filling property (1), whence the classes \frak Sp\frak {S}_{\pi } are not characterized by satisfying (1). Furthermore we prove that (2) holds true for all Fitting classes \frak F\frak {F} satisfying a certain extension property with respect to wreath products although there could be an \frak F\frak {F}-normal Fitting class outside the Lockett section of \frak F\frak {F}. Lastly, we show that for the important cases \frak F=\frak Nnn\geqq 2\frak {F}=\frak {N}^{n},\ n\geqq 2, and \frak F=\frak Sp1?\frak Sprpi \frak {F}=\frak {S}_{p_{1}}\cdots \frak {S}_{p_{r}},\ p_{i} primes, there is a unique smallest \frak F\frak {F}-normal Fitting class, which we describe explicitly.  相似文献   

18.
Let \mathbbZpm \mathbb{Z}_{p^m } be the ring of integers modulo p m , where p is a prime and m ⩾ 1. The general linear group GL n ( \mathbbZpm \mathbb{Z}_{p^m } ) acts naturally on the polynomial algebra A n := \mathbbZpm \mathbb{Z}_{p^m } [x 1, …, x n ]. Denote by AnGL2 (\mathbbZpm ) A_n^{GL_2 (\mathbb{Z}_{p^m } )} the corresponding ring of invariants. The purpose of the present paper is to calculate this invariant ring. Our results also generalize the classical Dickson’s theorem.  相似文献   

19.
For the Jacobi-type Bernstein–Durrmeyer operator M n,κ on the simplex T d of ℝ d , we proved that for fL p (W κ ;T d ) with 1<p<∞,
K2,\varPhi(f,n-1)k,pc||f-Mn,kf||k,pcK2,\varPhi(f,n-1)k,p+cn-1||f||k,p,K_{2,\varPhi}\bigl(f,n^{-1}\bigr)_{\kappa,p}\leq c\|f-M_{n,\kappa}f\|_{\kappa,p}\leq c'K_{2,\varPhi}\bigl(f,n^{-1}\bigr)_{\kappa ,p}+c'n^{-1}\|f\|_{\kappa,p},  相似文献   

20.
This paper concerns the integrability of Hamiltonian systems with two degrees of freedom whose Hamiltonian has the form¶ H=1/2(x12+x22) +V(y1,y2) H={1\over2}(x_{1}^{2}+x_{2}^{2}) +V(y_{1},y_{2}) where¶¶ V(y1,y2)=1/2(a1y12+a2y22) + 1/4b1y14 + 1/4b2y24 + 1/2b3y12y22 + ?k=13gk(y12+y22) k+2 V(y_{1},y_{2})={1\over2}\big(\alpha _{1}y_{1}^{2}+\alpha_{2}y_{2}^{2}\big) + {1\over4}\beta _{1}y_{1}^{4} + {1\over4}\beta_{2}y_{2}^{4} + {1\over2}\beta _{3}y_{1}^{2}y_{2}^{2} + \sum_{k=1}^{3}\gamma_{k}\big(y_{1}^{2}+y_{2}^{2}\big) ^{k+2} ¶¶ which, constitues a generalization of some well-known integrable systems. We give new values of the vector (a1,a2,b1,b2,b3,g1,g2,g3) (\alpha _{1},\alpha_{2},\beta _{1},\beta _{2},\beta _{3},\gamma _{1},\gamma _{2},\gamma _{3}) for which this system is completely integrable and we show that the system is linearized in the Jacobian variety Jac(G \Gamma ) of a smooth genus 2 hyperelliptic Riemann surface G \Gamma .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号