首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synaptically coupled neurons show in-phase or antiphase synchrony depending on the chemical and dynamical nature of the synapse. Deterministic theory helps predict the phase differences between two phase-locked oscillators when the coupling is weak. In the presence of noise, however, deterministic theory faces difficulty when the coexistence of multiple stable oscillatory solutions occurs. We analyze the solution structure of two coupled neuronal oscillators for parameter values between a subcritical Hopf bifurcation point and a saddle node point of the periodic branch that bifurcates from the Hopf point, where a rich variety of coexisting solutions including asymmetric localized oscillations occurs. We construct these solutions via a multiscale analysis and explore the general bifurcation scenario using the lambda-omega model. We show for both excitatory and inhibitory synapses that noise causes important changes in the phase and amplitude dynamics of such coupled neuronal oscillators when multiple oscillatory solutions coexist. Mixed-mode oscillations occur when distinct bistable solutions are randomly visited. The phase difference between the coupled oscillators in the localized solution, coexisting with in-phase or antiphase solutions, is clearly represented in the stochastic phase dynamics.  相似文献   

2.
We study the transition to phase synchronization in two diffusively coupled, nonidentical Chua oscillators. In the experiments, depending on the used parameterization, we observe several distinct routes to phase synchronization, including states of either in-phase, out-of-phase, or antiphase synchronization, which may be intersected by an intermediate desynchronization regime with large fluctuations of the frequency difference. Furthermore, we report the first experimental evidence of an anomalous transition to phase synchronization, which is characterized by an initial enlargement of the natural frequency difference with coupling strength. This results in a maximal frequency disorder at intermediate coupling levels, whereas usual phase synchronization via monotonic decrease in frequency difference sets in only for larger coupling values. All experimental results are supported by numerical simulations of two coupled Chua models.  相似文献   

3.
Thermo-acoustic instabilities are problematic in the design of continuous-combustion propulsion systems such as gas turbine engines, rocket motors, jet engine afterburners, and ramjets. Conceptually, the coupling between acoustics and flame dynamics can be divided into two categories: flame area fluctuations and changes in the local flame speed. The latter can be caused by the thermodynamic fluctuations that accompany an acoustic wave. This coupling is the focus of the present work. In this paper, we are concerned with the dynamics of laminar premixed flames involving large hydrocarbon species. Through high-fidelity numerical simulations, we investigate the flame response for a wide range of fuels and acoustic frequencies. The combustion of hydrogen and methane is considered for verification purposes and as baseline cases for comparison with two large hydrocarbon fuels, n-heptane and n-dodecane. We extract the phase and gain of the unsteady heat release response, which are directly related to the Rayleigh criterion and thus the stability of the system. For all fuels, we observe a local peak in the heat release gain. At high frequencies, we find that the fluctuations of the different species mass fractions decrease with the inverse of the acoustic frequency, leading to chemistry being “frozen” in the high-frequency limit. This allows us to predict the flame behavior directly from the steady-state solution.  相似文献   

4.
Traditional methods often only use monaural masking models to decorrelate input signals for stereo acoustic echo cancellation. Whereas, it seems more reasonable to use binaural masking models for the following two reasons. First, stereo signals are heard by two ears rather than just one. Second, psychoacoustic researchers have already shown that there are obvious masking level differences between binaural masking models and monaural masking models. By studying binaural masking level difference models, we first introduce a simplified binaural masking model for stereo acoustic echo cancellation. Considering that the interaural time difference is dominant at low frequencies (??1.5  kHz) and the interaural level difference is a major cue at higher frequencies, we propose to use different signal decorrelation schemes at these two frequency bands. In the low-frequency band, a pitch-driven sinusoidal injection scheme is proposed to maintain the interaural time difference, where the amount of injection is determined by the proposed binaural masking model. In the high-frequency band, a modified sinusoidal phase modulation scheme is applied to make a trade-off between preserving the interaural level difference and decorrelating the stereophonic input signals. Assessment results show that the proposed method can effectively improve the non-unique problem and retain good speech quality.  相似文献   

5.
We theoretically study the synchronization between collective oscillations exhibited by two weakly interacting groups of nonidentical phase oscillators with internal and external global sinusoidal couplings of the groups. Coupled amplitude equations describing the collective oscillations of the oscillator groups are obtained by using the Ott-Antonsen ansatz, and then coupled phase equations for the collective oscillations are derived by phase reduction of the amplitude equations. The collective phase coupling function, which determines the dynamics of macroscopic phase differences between the groups, is calculated analytically. We demonstrate that the groups can exhibit effective antiphase collective synchronization even if the microscopic external coupling between individual oscillator pairs belonging to different groups is in-phase, and similarly effective in-phase collective synchronization in spite of microscopic antiphase external coupling between the groups.  相似文献   

6.
Transient phase dynamics, synchronization, and desynchronization which are stimulus-locked (i.e., tightly time-locked to a repetitively administered stimulus) are studied in two coupled phase oscillators in the presence of noise. The presented method makes it possible to detect such processes in numerical and experimental signals. The time resolution is enormous, since it is only restricted by the sampling rate. Stochastic stimulus locking of the phases or the n:m phase difference at a particular time t relative to stimulus onset is defined by the presence of one or more prominent peaks in the cross-trial distribution of the phases or the n:m phase difference at time t relative to stimulus onset in an ensemble of poststimulus responses. The oscillators' coupling may cause a transient cross-trial response clustering of the poststimulus responses. In particular, the mechanism by which intrinsic noise induces symmetric antiphase cross-trial response clustering in coupled detuned oscillators is a stochastic resonance. Unlike the presented approach, both cross-trial averaging (where an ensemble of poststimulus responses is simply averaged) and cross-trial cross correlation (CTCC) lead to severe misinterpretations: Triggered averaging cannot distinguish a cross-trial response clustering or decorrelation from a mean amplitude decrease of the single responses. CTCC not only depends on the oscillators' phase difference but also on their phases and, thus, inevitably displays "artificial" oscillations that are not related to synchronization or desynchronization.  相似文献   

7.
This paper deals with the problem of reproducing two signals at two points in space by using two acoustic sources. While much is now known about the techniques available for the design of matrices of inverse filters that enable this objective to be achieved in practice, it is still the basic physics of the sound field produced that controls the effectiveness of such systems and which ultimately dictates their design. The basic physical processes involved in producing the cross-talk cancellation that enables the reproduction of the desired signals is revisited here by using a simple two source/two field point free field model. The singular value decomposition is used to identify those frequencies where the inversion problem becomes ill-conditioned and to explain physically the origin of the ill-conditioning. As observed previously, it is found that cross-talk cancellation becomes problematic when the path length difference between the two sources and one of the field points becomes equal to one half the acoustic wavelength. The ill-conditioned frequencies are also found to be associated with a limited spatial region of cross-talk cancellation and with large source outputs manifested in the time domain by responses of long duration.  相似文献   

8.
二维声学极化子的基态能量和有效质量   总被引:1,自引:1,他引:0  
侯俊华  梁希侠 《发光学报》2008,29(4):670-674
自陷电子对了解光电材料的光学性质非常重要.近些年来,形变晶格中电子自陷的问题受到研究人员的广泛关注.电子既与声学模耦合,也与光学模相互作用,但电子由自由态向自陷态的转变缘于近程的电子-声学声子耦合.研究表明:声学极化子在大多数半导体以及Ⅲ-Ⅴ族化合物,甚至碱卤化物中都不可能自陷.另一方面,电子-声子耦合在束缚结构,如二维、一维系统中,会有所增强.换言之,电子在低维结构中更容易自陷.Farias等人指出:声学极化子在二维系统中自陷的临界电子-声子耦合常数为定值,不随声子截止波矢的变化而改变.这种结论在物理上不尽合理.通过计算二维系统中的声学极化子基态能量和有效质量,讨论了二维声学极化子自陷问题.研究发现,二维声学极化子自陷转变的临界耦合常数随声子截止波矢的增加朝电子-声子耦合较弱的方向变化.这一特征与前人关于体和表面极化子研究获得的结论定性一致.所得二维声学极化子基态能量的表达式与Farias等人一致,但自陷的结果与Farias等人的结果在定性和定量上均有不同,我们认为Farias等人关于二维声学极化子自陷转变点的确定方式有不妥之处.通过改进自陷转变点的确定方式,得到了在物理上更合理的结果.  相似文献   

9.
Transfer matrices are commonly considered in the numerical modelling of the acoustic behaviour associated with exhaust devices in the breathing system of internal combustion engines, such as catalytic converters, particulate filters, perforated mufflers and charge air coolers. In a multidimensional finite element approach, a transfer matrix provides a relationship between the acoustic fields of the nodes located at both sides of a particular region. This approach can be useful, for example, when one-dimensional propagation takes place within the region substituted by the transfer matrix. As shown in recent investigations, the sound attenuation of catalytic converters can be properly predicted if the monolith is replaced by a plane wave four-pole matrix. The finite element discretization is retained for the inlet/outlet and tapered ducts, where multidimensional acoustic fields can exist. In this case, only plane waves are present within the capillary ducts, and three-dimensional propagation is possible in the rest of the catalyst subcomponents. Also, in the acoustic modelling of perforated mufflers using the finite element method, the central passage can be replaced by a transfer matrix relating the pressure difference between both sides of the perforated surface with the acoustic velocity through the perforations. The approaches in the literature that accommodate transfer matrices and finite element models consider conforming meshes at connecting interfaces, therefore leading to a straightforward evaluation of the coupling integrals. With a view to gaining flexibility during the mesh generation process, it is worth developing a more general procedure. This has to be valid for the connection of acoustic subdomains by transfer matrices when the discretizations are nonconforming at the connecting interfaces. In this work, an integration algorithm similar to those considered in the mortar finite element method, is implemented for nonmatching grids in combination with acoustic transfer matrices. A number of numerical test problems related to some relevant exhaust devices are then presented to assess the accuracy and convergence performance of the proposed procedure.  相似文献   

10.
A simple, non-invasive method for the measurement of eye vibrations above 30 Hz is described. The method can be used in either laboratory or natural conditions, and is based on the cancellation of an illusion of motion that occurs when two nearby light sources flickering in counterphase above the flicker fusion limit are observed during eye vibration. In these conditions, the light sources appear to oscillate in space at a frequency equal to the difference between the vibration and flicker frequencies. The frequency of eye vibration can be determined by adjusting the flicker frequency until the illusion disappears (i.e., until the difference frequency becomes zero). The same set-up can also be used to determine the amplitude of eye vibration, by adjusting the spatial separation between the two light sources until the oscillation appears to be the result of their bouncing off each other upon contact. The reliability and sensitivity of this method are illustrated with data from three observers whose eyes were vibrated with a commercial massager applied onto their neck, and using three different settings for the speed of the massager.  相似文献   

11.
12.
We have investigated the underlying assumptions in estimating cross-correlation rates between chemical shift anisotropy (CSA) and dipolar coupling mechanisms in a scalar-coupled two-spin IS system, from laboratory frame relaxation experiments. It has been shown that for an arbitrary relaxation delay, the difference in relaxation rates of the individual components of an in-phase (or antiphase) doublet is not related to the CSA–dipolar coupling cross-correlation rate in a simple way. This is especially true in the case where the difference in the decay rates of the in-phase and antiphase terms of the density matrix becomes comparable to the magnitude of the scalar coupling between the two spins. Improved means of extracting cross-correlation rates in these cases are presented.  相似文献   

13.
An analysis is presented of the noise problem produced when the application of standard acoustic treatment to a roof-mounted diesel generator failed to meet the design criterion. The problem was diagnosed as excessive vibration reaching the building due to the excitation of a resonance of the supporting structure. The resonance responsible was identified as a flexural mode of the partial floating floor installed below the generator set in order to provide a high transmission loss acoustic barrier. A solution to the problem was provided by converting the existing vibration isolation into a compound system. The reasons for the failure of the existing system are analysed. A simple theory is developed which illustrates that the ratio of machine mass to floating floor mass is the important parameter determining the severity of excitation of floating floor resonance. It is concluded that machines can be safely mounted via vibration isolators onto continuous floating floors provided they ahve a low mass compared with the floating floor mass and are provided with a low mounted resonant frequency compared with the floating floor resonant frequency.  相似文献   

14.
The dynamic behavior of coupled chaotic oscillators is investigated. For small coupling, chaotic state undergoes a transition from a spatially disordered phase to an ordered phase with an orientation symmetry breaking. For large coupling, a transition from full synchronization to partial synchronization with translation symmetry breaking is observed. Two bifurcation branches, one in-phase branch starting from synchronous chaos and the other antiphase branch bifurcated from spatially random chaos, are identified by varying coupling strength epsilon. Hysteresis, bistability, and first-order transitions between these two branches are observed.  相似文献   

15.
The time dependent finite difference theory is extended to the solution of the acoustic wave equation in rectangular ducts when acoustic/structural interactions are allowed at a duct wall. The treatment of the boundary condition which describes the coupling is examined, and the stability of the procedure is studied and found to depend on the nature of this coupling. The convergence of solutions is discussed as a function of the discretization of the solution domain, particularly at frequencies approaching resonance.  相似文献   

16.
In an open cycle traveling wave thermoacoustic engine, the hot heat exchanger is replaced by a steady flow of hot gas into the regenerator to provide the thermal energy input to the engine. The steady-state operation of such a device requires that a potentially large mean temperature difference exist between the incoming gas and the solid material at the regenerator's hot side, due in part to isentropic gas oscillations in the open space adjacent to the regenerator. The magnitude of this temperature difference will have a significant effect on the efficiencies of these open cycle devices. To help assess the feasibility of such thermoacoustic engines, a numerical model is developed that predicts the dependence of the mean temperature difference upon the important design and operating parameters of the open cycle thermoacoustic engine, including the acoustic pressure, mean mass flow rate, acoustic phase angles, and conductive heat loss. Using this model, it is also shown that the temperature difference at the regenerator interface is approximately proportional to the sum of the acoustic power output and the conductive heat loss at this location.  相似文献   

17.
李伟恒  潘飞  黎维新  唐国宁 《物理学报》2015,64(19):198201-198201
本文采用Bär-Eiswirth模型研究了两层可激发介质中螺旋波的动力学, 两层介质采用抑制和兴奋性非对称耦合. 数值模拟结果表明: 兴奋性非对称耦合可以促进两个不同频率的螺旋波锁频, 即使初始频率相差大, 两螺旋波也能实现锁频, 这种耦合使两个螺旋波具有最强的锁频能力; 当两层介质采用抑制性非对称耦合时, 只有当两个初始螺旋波的频率差比较小才能实现锁频, 而且比一般扩散耦合的锁频范围窄, 两螺旋波锁频能力达到最低水平; 当耦合强度和控制参数适当选取时, 抑制性和兴奋性非对称耦合既可以使其中一层介质维持螺旋波态, 使另一层介质中的螺旋波演化到静息态或低频靶波态, 也可以使两层介质中的螺旋波都漫游, 或都转变成靶波, 最后这两个靶波要么消失, 要么转变成平面波状的振荡斑图, 而且两层介质振荡是反相的, 此外在模拟中还观察到两螺旋波局部间歇锁频现象, 这些结果有助于人们理解在心脏系统中出现的复杂现象.  相似文献   

18.
The sound transmission through an infinite multilayer cylinder composed of orthotropic skins and an isotropic polymer core is calculated analytically. The motions of the two thin orthotropic skins are described with the first-order shear deformation theory while the isotropic core is modeled with the three-dimensional elasticity theory. The polymer core transfer matrix relating the displacements and the stresses at the two common interfaces between the core and the skins is first calculated. The coupling of the two skins is then made using the modal transfer matrix of the core, leading to the global dynamic equilibrium of the multilayer cylinder. The sound Transmission Loss (TL) of the cylinder excited by an acoustic plane wave is finally calculated. Our results are compared with results published recently in the literature. Excellent agreement is observed for thin cores where the three layers vibrate in phase in the radial direction. The usefulness of the three-dimensional model is demonstrated for a thick and soft core in the higher frequency domain where the skins are vibrating out of phase with a relative displacement in the radial direction. Finally, a parametric study is conducted to demonstrate the influence of the damping of each layer and some observations are made on the shear and compressional strain energies of each layer.  相似文献   

19.
Based on the theory of coupling vibration and flexural vibration of thin rod of rectangular cross section, the fiexural vibration of rectangular thin plate was studied. The frequency equation was derived under the condition of freeboundaries. The normal modes and the relation between the normal modes and the resonant frequency were obtained. Experiments showed that the calculated resonant frequencies agree well with the measured results, and the rectangular thin plate in flexural vibration has abundant resonant frequencies. The radiator of flexural vibration used in ultrasonic cleaning and other techniques has the advantages of large acoustic radiating area, uniform acoustic field and easy adjustment of resonant frequencies, proving that it is a promising ultrasonic source.  相似文献   

20.
We theoretically investigate the collective phase synchronization between interacting groups of globally coupled noisy identical phase oscillators exhibiting macroscopic rhythms. Using the phase reduction method, we derive coupled collective phase equations describing the macroscopic rhythms of the groups from microscopic Langevin phase equations of the individual oscillators via nonlinear Fokker-Planck equations. For sinusoidal microscopic coupling, we determine the type of the collective phase coupling function, i.e., whether the groups exhibit in-phase or antiphase synchronization. We show that the macroscopic rhythms can exhibit effective antiphase synchronization even if the microscopic phase coupling between the groups is in-phase, and vice versa. Moreover, near the onset of collective oscillations, we analytically obtain the collective phase coupling function using center-manifold and phase reductions of the nonlinear Fokker-Planck equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号