首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exact solutions of Euler equations that describe the motion of an ideal incompressible fluid with quadratic pressure are studied. The solutions are described by explicit formulas and can be physically interpreted. The dynamics of a spherical fluid volume is studied for specified initial velocity fields. It is shown that under certain initial conditions, the spherical volume can evolve into a torusshaped body, thereby changing the connectivity of the region occupied by the fluid.  相似文献   

2.
Introduction Itisreasonabletoconsiderarealfluidasanidealoneinfluidmechanicsundermany conditions.Forinstance,ingeneral,forthedistributionofthefluidfieldaroundtheaerocraft,mostpartofthefluidfieldmayberegardedasidealfluidexceptforasmallpartwhereeffects ofviscousandheatconductioninthethinlayernearthesurfacemustbeconsidered.Evenif thefluidiscompletelysupposedasidealonethroughoutthefluidfield,thequitereasonable resultsarealsogained,thereforestudyingidealfluidhasnotonlytheoreticalsignificancebut also…  相似文献   

3.
We derive a wave equation for small-amplitude, undamped, extensional oscillation of a spring-mass system consisting of a mass suspended on a spring governed by a quadratic force-extension relationship. We justify this quadratic model using a Taylor series expansion of the general elasticity equations for a helical spring. Transformation of the equation of motion of the spring leads to a separable wave equation with the spacial component being a transformation of Bessel's equation. The model is successful in predicting static extension and period of oscillation of a helical wire spring for which the wave equation based on Hooke's law is inadequate.  相似文献   

4.
Zhan Wang 《力学快报》2022,12(1):100315
A unidirectional, weakly dispersive nonlinear model is proposed to describe the supercritical bifurcation arising from hydroelastic waves in deep water. This model equation, including quadratic, cubic, and quartic nonlinearities, is an extension of the famous Whitham equation. The coefficients of the nonlinear terms are chosen to match with the key properties of the full Euler equations, precisely, the associated cubic nonlinear Schr?dinger equation and the amplitude of the solitary wave at the bifurcation point. It is shown that the supercritical bifurcation, rich with Stokes, solitary, generalized solitary, and dark solitary waves in the vicinity of the phase speed minimum, is a universal bifurcation mechanism. The newly developed model can capture the essential features near the bifurcation point and easily be generalized to other nonlinear wave problems in hydrodynamics.  相似文献   

5.
We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler–Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler–Voigt equations also require less resolution than simulations of the 3D Euler equations for fixed values of the regularization parameter \(\alpha >0\). Therefore, the new blow-up criteria allow one to gain information about possible singularity formation in the 3D Euler equations indirectly, namely by simulating the better-behaved 3D Euler–Voigt equations. The new criteria are only known to be sufficient criterion for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well known to occur.  相似文献   

6.
In the paper work, the nonlinear vibration response of functionally graded (FG) Euler–Bernoulli beam resting on elastic foundation is studied. Based on von Kármán’s geometric nonlinearity, the partial differential governing equations describing the nonlinear vibration of FG Euler–Bernoulli beam are derived from Hamilton’s principle and are reduced to an ordinary nonlinear differential equation with quadratic and cubic nonlinear terms via Galerkin’s procedure. Due to unsymmetrical material variation along the thickness of FG beam, the neutral surface concept is proposed to remove the stretching and bending coupling effect and the rotary inertia of the cross section is incorporated to obtain an analytical solution. Numerical results are presented to show the effects of the nonlocal parameters and vibration amplitude on the frequency responses. This results may be useful in design and engineering applications.  相似文献   

7.
In this work, we present analytic formulas for calculating the critical buckling states of some plastic axial columns of constant cross-sections. The associated critical buckling loads are calculated by Euler-type analytic formulas and the associated deformed shapes are presented in terms of generalized trigonometric functions. The plasticity of the material is defined by the Hollomon's power-law equation. This is an extension of the Euler critical buckling loads of perfect elastic columns to perfect plastic columns. In particular, critical loads for perfect straight plastic columns with circular and rectangular cross-sections are calculated for a list of commonly used metals. Connections and comparisons to the classical result of the Euler–Engesser reduced-modulus loads are also presented.  相似文献   

8.
In this work a new finite element based Method of Relaxed Streamline Upwinding is proposed to solve hyperbolic conservation laws. Formulation of the proposed scheme is based on relaxation system which replaces hyperbolic conservation laws by semi-linear system with stiff source term also called as relaxation term. The advantage of the semi-linear system is that the nonlinearity in the convection term is pushed towards the source term on right hand side which can be handled with ease. Six symmetric discrete velocity models are introduced in two dimensions which symmetrically spread foot of the characteristics in all four quadrants thereby taking information symmetrically from all directions. Proposed scheme gives exact diffusion vectors which are very simple. Moreover, the formulation is easily extendable from scalar to vector conservation laws. Various test cases are solved for Burgers equation (with convex and non-convex flux functions), Euler equations and shallow water equations in one and two dimensions which demonstrate the robustness and accuracy of the proposed scheme. New test cases are proposed for Burgers equation, Euler and shallow water equations. Exact solution is given for two-dimensional Burgers test case which involves normal discontinuity and series of oblique discontinuities. Error analysis of the proposed scheme shows optimal convergence rate. Moreover, spectral stability analysis gives implicit expression of critical time step.  相似文献   

9.
Most gas dynamic computations in industrial ducts are done in one dimension with cross-section-averaged Euler equations. This poses a fundamental difficulty as soon as geometrical discontinuities are present. The momentum equation contains a non-conservative term involving a surface pressure integral, responsible for momentum loss. Definition of this integral is very difficult from a mathematical standpoint as the flow may contain other discontinuities (shocks, contact discontinuities). From a physical standpoint, geometrical discontinuities induce multidimensional vortices that modify the surface pressure integral. In the present paper, an improved 1D flow model is proposed. An extra energy (or entropy) equation is added to the Euler equations expressing the energy and turbulent pressure stored in the vortices generated by the abrupt area variation. The turbulent energy created by the flow–area change interaction is determined by a specific estimate of the surface pressure integral. Model’s predictions are compared with 2D-averaged results from numerical solution of the Euler equations. Comparison with shock tube experiments is also presented. The new 1D-averaged model improves the conventional cross-section-averaged Euler equations and is able to reproduce the main flow features.  相似文献   

10.
We prove that if a scale of the diameter of particles is not greater than a scale of the mean free path to a high enough power, if the scale of the mean free path is sufficiently small, and if the non-hydrodynamic part of the initial data satisfies an assumption of smallness, then a solution of the initial-value problem exists for the Enskog equation on a macroscopic time interval as long as a smooth solution of the Euler equations for compressible fluids exists. This Enskog solution is approximated both by the corresponding solution of the Boltzmann equation and by the solution of the Euler equations.  相似文献   

11.
在最优控制理论中根据模拟理论思想发展了塑性力学和接触力学中的参变量变分原理, 并建立了控制输入受限的线性二次(linear quadratic, LQ)最优控制问题的求解新方程---耦合的Hamilton正则方程与线性互补方程. 通过将连续时间离散成一系列等间距时间区段, 在离散时域内采用参数二次规划方法给出数值求解输入受限的LQ最优控制问题的新算法. 数值仿真验证了该算法在求解控制输入受限的LQ最优控制问题中的有效性, 并且该算法具有较快的收敛性, 在大步长下具有较高的计算精度.   相似文献   

12.
Newton's second law is used to develop the nonlinear equations describing the extensional-flexural-flexural-torsional vibrations of slewing or rotating metallic and composite beams. Three consecutive Euler angles are used to relate the deformed and undeformed states. Because the twisting-related Euler angle is not an independent Lagrangian coordinate, twisting curvature is used to define the twist angle, and the resulting equations of motion are symmetric and independent of the rotation sequence of the Euler angles. The equations of motion are valid for extensional, inextensional, uniform and nonuniform, metallic and composite beams. The equations contain structural coupling terms and quadratic and cubic nonlinearities due to curvature and inertia. Some comparisons with other derivations are made, and the characteristics of the modeling are addressed. The second part of the paper will present a nonlinear analysis of a symmetric angle-ply graphite-epoxy beam exhibiting bending-twisting coupling and a two-to-one internal resonance.  相似文献   

13.
Using linear differential equations with constant coefficients describing one-dimensional dynamical processes as an example, we show that the solutions of these equations and systems are related to the solution of the corresponding numerical recursion relations and one does not have to compute the roots of the corresponding characteristic equations. The arbitrary functions occurring in the general solution of the homogeneous equations are determined by the initial and boundary conditions or are chosen from various classes of analytic functions. The solutions of the inhomogeneous equations are constructed in the form of integro-differential series acting on the right-hand side of the equation, and the coefficients of the series are determined from the same recursion relations. The convergence of formal solutions as series of a more general recursive-operator construction was proved in [1]. In the special case where the solutions of the equation can be represented in separated variables, the power series can be effectively summed, i.e., expressed in terms of elementary functions, and coincide with the known solutions. In this case, to determine the natural vibration frequencies, one obtains algebraic rather than transcendental equations, which permits exactly determining the imaginary and complex roots of these equations without using the graphic method [2, pp. 448–449]. The correctness of the obtained formulas (differentiation formulas, explicit expressions for the series coefficients, etc.) can be verified directly by appropriate substitutions; therefore, we do not prove them here.  相似文献   

14.
In this communication we present the equations of Euler generalized for the motion of a body in an accelerated reference frame using the generalized work-energy principle. The equivalence among the generalized Euler equation, the generalized Lagrange equation, and the generalized Kane equation are shown when applied to the motion of a body of a holonomic system that depend onn generalized coordinates. Therefore when the generalized coordinates can be reduced to two sets of independent coordinates, the generalized Euler equation can be split into two uncoupled equations that are not independent of each other.Universidade da Beira Interior, Covilhã, Portugal. Published in Prikladnaya Mekhanika, Vol. 31, No. 9, pp. 79–89, September, 1995.  相似文献   

15.
著名的理想流体定常流动的能量方程即伯努利方程,自建立以来在流体力学领域中贡献卓著。本文依据伯努利方程的建立内涵,阐述了其在流体静力学、定常孔口出流、皮托管测速、文丘里管流量和翼型绕流等具体流动中的成功应用。同时,进一步说明了由伯努利方程建立提出的局部跟随流体质点的建模思想,被欧拉概括为描述流体运动的流场法,是建立欧拉方程组和N-S方程组的基本依据,也为后来湍流理论、边界层理论、气动噪声等理论的建立奠定了基础。  相似文献   

16.
著名的理想流体定常流动的能量方程即伯努利方程,自建立以来在流体力学领域中贡献卓著。本文依据伯努利方程的建立内涵,阐述了其在流体静力学、定常孔口出流、皮托管测速、文丘里管流量和翼型绕流等具体流动中的成功应用。同时,进一步说明了由伯努利方程建立提出的局部跟随流体质点的建模思想,被欧拉概括为描述流体运动的流场法,是建立欧拉方程组和N-S方程组的基本依据,也为后来湍流理论、边界层理论、气动噪声等理论的建立奠定了基础。  相似文献   

17.
It is well known that the Boltzmann equation is related to the Euler and Navier-Stokes equations in the field of gas dynamics. The relation is either for small Knudsen number, or, for dissipative waves in the time-asymptotic sense. In this paper, we show that rarefaction waves for the Boltzmann equation are time-asymptotic stable and tend to the rarefaction waves for the Euler and Navier-Stokes equations. Our main tool is the combination of techniques for viscous conservation laws and the energy method based on micro-macro decomposition of the Boltzmann equation. The expansion nature of the rarefaction waves and the suitable microscopic version of the H-theorem are essential elements of our analysis.  相似文献   

18.
Hammack & Segur (1978) conducted a series of surface water-wave experiments in which the evolution of long waves of depression was measured and studied. This present work compares time series from these experiments with predictions from numerical simulations of the KdV, Serre, and five unidirectional and bidirectional Whitham-type equations. These comparisons show that the most accurate predictions come from models that contain accurate reproductions of the Euler phase velocity, sufficient nonlinearity, and surface tension effects. The main goal of this paper is to determine how accurately the bidirectional Whitham equations can model data from real-world experiments of waves on shallow water. Most interestingly, the unidirectional Whitham equation including surface tension provides the most accurate predictions for these experiments. If the initial horizontal velocities are assumed to be zero (the velocities were not measured in the experiments), the three bidirectional Whitham systems examined herein provide approximations that are significantly more accurate than the KdV and Serre equations. However, they are not as accurate as predictions obtained from the unidirectional Whitham equation.  相似文献   

19.
The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynamics is the Rankine–Hugoniot conditions for the shock speed. Here, we provide an expression for the acceleration of the discontinuity in terms of the state variables and their spatial derivatives on both sides. We derive a jump condition for the shock acceleration. Using this general expression, we show how to obtain explicit shock acceleration formulas for nonlinear hyperbolic conservation laws. We start with the Burgers’ equation and check the derived formula with an analytical solution. We next derive formulas for the Shallow Water Equations and the Euler Equations of Gas Dynamics. We will verify our formulas for the Euler Equations using an exact solution for the spherically symmetric blast wave problem. In addition, we discuss the potential use of these formulas for the implementation of shock fitting methods.  相似文献   

20.
In a fluid flow, fields are measurable up to a cut-off scale at which they are regularized. We show that, for a smooth velocity field, this regularization adds to the advection equation a diffusive term proportional to the strain tensor. We study in two dimensions its effect on the dynamics of velocity and vorticity, and on the conservation of quadratic invariants. Vorticity and energy are still conserved, while enstrophy and tracer variance are dissipated depending on the flow topology. These properties (conservation, dissipation, spatial selectivity) suggest the use of this selective strain–diffusion operator for numerical simulations of inhomogeneous flows in the quasi-two-dimensional approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号