首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhiber-Shabat方程,描述许多重要的物理现象,是一类重要的非线性方程,有着许多广泛的应用前景.本文给出Zhiber-Shabat方程的多辛几何结构和多辛Fourier拟谱方法.数值算例结果表明多辛离散格式具有较好的长时间的数值稳定性.  相似文献   

2.
The higher order wave equation of KdV type, which describes many important physical phenomena, has been investigated widely in last several decades. In this work, multi-symplectic formulations for the higher order wave equation of KdV type are presented, and the local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. The multi-symplectic discretization of each formulation is calculated by the multi-symplectic Fourier pseudospectral scheme. Numerical experiments are carried out, which verify the efficiency of the Fourier pseudospectral method.  相似文献   

3.
In this paper, the multi-symplectic Fourier pseudospectral (MSFP) method is generalized to solve two-dimensional Hamiltonian PDEs with periodic boundary conditions. Using the Fourier pseudospectral method in the space of the two-dimensional Hamiltonian PDE (2D-HPDE), the semi-discrete system obtained is proved to have semi-discrete multi-symplectic conservation laws and a global symplecticity conservation law. Then, the implicit midpoint rule is employed for time integration to obtain the MSFP method for the 2D-HPDE. The fully discrete multi-symplectic conservation laws are also obtained. In addition, the proposed method is applied to solve the Zakharov–Kuznetsov (ZK) equation and the Kadomtsev–Petviashvili (KP) equation. Numerical experiments on soliton solutions of the ZK equation and the KP equation show the high accuracy and effectiveness of the proposed method.  相似文献   

4.
In this paper, the multi-symplectic Fourier pseudospectral (MSFP) method is generalized to solve two-dimensional Hamiltonian PDEs with periodic boundary conditions. Using the Fourier pseudospectral method in the space of the two-dimensional Hamiltonian PDE (2D-HPDE), the semi-discrete system obtained is proved to have semi-discrete multi-symplectic conservation laws and a global symplecticity conservation law. Then, the implicit midpoint rule is employed for time integration to obtain the MSFP method for the 2D-HPDE. The fully discrete multi-symplectic conservation laws are also obtained. In addition, the proposed method is applied to solve the Zakharov-Kuznetsov (ZK) equation and the Kadomtsev-Petviashvili (KP) equation. Numerical experiments on soliton solutions of the ZK equation and the KP equation show the high accuracy and effectiveness of the proposed method.  相似文献   

5.
In this paper, we find that the Ito-type coupled KdV equation can be written as a multi-symplectic Hamiltonian partial differential equation (PDE). Then, multi-symplectic Fourier pseudospectral method and multi-symlpectic wavelet collocation method are constructed for this equation. In the numerical experiments, we show the effectiveness of the proposed methods. Some comparisons between the proposed methods are also made with respect to global conservation properties.  相似文献   

6.
In this article, an exponential wave integrator Fourier pseudospectral (EWI-FP) method is proposed for solving the nonlinear Schrödinger equation with wave operator. The numerical method is based on a Deuflhard-type exponential wave integrator for temporal integration and the Fourier pseudospectral method for spatial discretizations. The scheme is fully explicit and very efficient thanks to the fast Fourier transform. Numerical analysis of the proposed EWI-FP method is carried out and rigorous error estimates are established by means of the mathematical induction. Numerical results are reported to confirm the theoretical studies.  相似文献   

7.
Geometric discretizations that preserve certain Hamiltonian structures at the discrete level has been proven to enhance the accuracy of numerical schemes. In particular, numerous symplectic and multi-symplectic schemes have been proposed to solve numerically the celebrated Korteweg-de Vries equation. In this work, we show that geometrical schemes are as much robust and accurate as Fourier-type pseudospectral methods for computing the long-time KdV dynamics, and thus more suitable to model complex nonlinear wave phenomena.  相似文献   

8.
带乘性噪声的空间分数阶随机非线性Schrödinger方程是一类重要的方程,可应用于描述开放非局部量子系统的演化过程.该方程为一个无穷维分数阶随机Hamilton系统,且具有广义多辛结构和质量守恒的性质.针对该方程的广义多辛形式,在空间上采用拟谱方法离散分数阶微分算子,在时间上则采用隐式中点格式,构造出一类保持全局质量的广义多辛格式.对行波解和平面波解等进行数值模拟,结果验证了所构造格式的有效性和保结构性质,时间均方收敛阶约在0.5到1之间.  相似文献   

9.
基于谱微分矩阵方法,给出MKdV方程的多辛Fourier拟谱格式及其相应多辛离散守恒律,证明了它等价于通常的Fourier拟谱格式.数值结果表明,格式对于长时间计算具有稳定性与高精度.  相似文献   

10.
非线性发展方程由于具有多种形式的解析解而吸引着众多的研究者,借助多辛保结构理论研究了Sine-Gordon方程的多辛算法.利用Hamilton变分原理,构造出了sine-Gordon方程的多辛格式;采用显辛离散方法得到了Leap-frog多辛离散格式,该格式满足多辛守恒律;数值结果表明leap-frog多辛离散格式能够精确地模拟sine-Gordon方程的孤子解和周期解,模拟结果证实了该离散格式具有良好的数值稳定性.  相似文献   

11.
In this paper, we develop symplectic and multi-symplectic wavelet collocation methods to solve the two-dimensional nonlinear Schrödinger equation in wave propagation problems and the two-dimensional time-dependent linear Schrödinger equation in quantum physics. The Hamiltonian and the multi-symplectic formulations of each equation are considered. For both formulations, wavelet collocation method based on the autocorrelation function of Daubechies scaling functions is applied for spatial discretization and symplectic method is used for time integration. The conservation of energy and total norm is investigated. Combined with splitting scheme, splitting symplectic and multi-symplectic wavelet collocation methods are also constructed. Numerical experiments show the effectiveness of the proposed methods.  相似文献   

12.
DGH方程作为一类重要的非线性水波方程有着许多广泛的应用前景.基于Hamilton系统的多辛理论研究了一类强色散DGH方程的数值解法,利用多辛普雷斯曼方法构造了一种典型的半隐式的多辛格式.分析了该格式的局部能量和动量守恒律误差,并给出了数值算例.数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性.  相似文献   

13.
广义Boussinesq方程的多辛方法   总被引:1,自引:1,他引:0  
广义Boussinesq方程作为一类重要的非线性方程有着许多有趣的性质,基于Hamilton空间体系的多辛理论研究了广义Boussinesq方程的数值解法,构造了一种等价于多辛Box格式的新隐式多辛格式,该格式满足多辛守恒律、局部能量守恒律和局部动量守恒律.对广义Boussinesq方程孤子解的数值模拟结果表明,该多辛离散格式具有较好的长时间数值稳定性.  相似文献   

14.
The multi-symplectic geometry for the GSDBM equation is presented in this paper. The multi-symplectic formulations for the GSDBM equation are presented and the local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. The multi-symplectic discretization of each formulation is exemplified by the multisymplectic Preissmann scheme. The numerical experiments are given, and the results verify the efficiency of the Preissmann scheme.  相似文献   

15.
In this article, we propose a Fourier pseudospectral method for solving the generalized improved Boussinesq equation. We prove the convergence of the semi‐discrete scheme in the energy space. For various power nonlinearities, we consider three test problems concerning the propagation of a single solitary wave, the interaction of two solitary waves and a solution that blows up in finite time. We compare our numerical results with those given in the literature in terms of numerical accuracy. The numerical comparisons show that the Fourier pseudospectral method provides highly accurate results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 995–1008, 2015  相似文献   

16.
CONVERGENCE OF SPECTRAL METHOD IN TIME FOR BURGERS' EQUATION   总被引:2,自引:0,他引:2  
1.IntroductionTheclassicalspectralmethodsforBurgers'equationUt UUz~AUg.=fusuallydiscretizethetimedirectionwithfinitedifferencemethod[1]sothattheorderofconvergenceinthet-directionislowerthanthatinthex-directionwhichisdiscretisedwithspectralmethod.Therefore,toobtainintegralhighorderofconvergence,wemayalsoapplyspectralmethodtothet-direction.Suchatrialcanbefoundin12],wheresomenumericalresultsweregivenbyusingthetaumethodintime,butconvergenceofthemethodisnotprovedtheoretically.Asweshallfindinpara…  相似文献   

17.
The multi-symplectic geometry for the GSDBM equation is presented in this paper. The multi-symplectic formulations for the GSDBM equation are presented and the local conservation laws are shown to correspond to certain well-known Hamiltonian func-tionals. The multi-symplectic discretization of each formulation is exemplified by the multi-symplectic Preissmann scheme. The numerical experiments are given, and the results verify the efficiency of the Preissmann scheme.  相似文献   

18.
The Hamiltonian and multi-symplectic formulations for RLW equation are considered in this paper. A new twelve-point difference scheme which is equivalent to multi-symplectic Preissmann integrator is derived based on the multi-symplectic formulation of RLW equation. And the numerical experiments on solitary waves are also given. Comparing the numerical results for RLW equation with those for KdV equation, the inelastic behavior of RLW equation is shown.  相似文献   

19.
This paper gives a rigorous error analysis of the multisymplectic Fourier pseudospectral method for the nonlinear fractional Schrödinger equation. The method preserves some intrinsic structure properties including the generalized multisymplectic conservation law. By rewriting it in a matrix form similar to that in the finite difference method, the method is shown to be convergent in the discrete L2 norm with the second-order accuracy in time and spectral accuracy in space. The key techniques in the analysis include the discrete energy method, cutoff of the nonlinearity, and a posterior bound of numerical solutions by using the inverse inequality. In a similar line, the convergence result for the symplectic Fourier pseudospectral method can also be established. Moreover, the errors in the local and global energy conservation laws of discrete systems are also investigated. Numerical tests are performed to confirm the theoretical results.  相似文献   

20.
膜自由振动的多辛方法   总被引:1,自引:1,他引:0  
基于Hamilton空间体系的多辛理论研究了膜自由振动问题,讨论了构造复合离散多辛格式的方法,并构造了一种典型的9×3点半隐式的多辛复合离散格式,该格式满足多辛守恒律、能量守恒律和动量守恒律.数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号