首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于非线性能量阱的双频激励非线性系统减振   总被引:2,自引:1,他引:1       下载免费PDF全文
孙斌  吴志强 《应用数学和力学》2017,38(11):1240-1250
针对某型民用航空发动机双频带激励特点,建立了单自由度线性振子耦合非线性能量阱(nonlinear energy sink,NES)的动力学模型.根据典型双转子发动机在巡航状态下低、高特征频率比(1∶4.74),为系统设定双频带简谐外激励.利用四阶Runge-Kutta算法,研究了耦合NES振子时系统的振动抑制特征,并从外激励频率对系统主振子动能、系统总体能量的影响等方面,与未耦合NES系统、耦合线性动力吸振器两种情况下的数值计算结果进行对比分析.研究结果表明NES对双频带外激励具有更好的振动抑制效果,用NES降低航空发动机振动有可行性.  相似文献   

2.
The suppression of vortex-induced vibration (VIV) of a circular cylinder with a free-to-rotate triangular fairing in the Reynolds number range of Re = 1100–6100 is numerically investigated using computational fluid dynamics. The unsteady Reynolds-averaged Navier–Stokes equations and the shear stress transport kω turbulence model coupled with an improved fourth-order Runge–Kutta method are used to solve the wake flow, the structure's vibration, and the fairing's rotation. The computational model is validated with the available experimental results for a cylinder with an attached short-tail fairing. The numerical results indicate that the triangular fairing has a positive role in suppressing vibration when it achieves a stable position deflected from the flow direction. The suppression effect is sensitive to the incoming flow velocity. The fairing shifts from a stable state to an unstable one when the flow velocity varies. Therefore, maintaining the hydrodynamic stability of the fairing is the key to achieving success in vibration suppression, and the stability is dependent on the characteristic length and the rotational friction. Although the strong flapping of the 70° triangular fairing excites a more vigorous vibration, it may be used as an amplifier of VIV for energy harvesting.  相似文献   

3.
A nonlinear saturation-based control strategy for the suppression of the free vibration of a self-excited plant is presented. The self-excitation to have the classical form of that of the van der Pol oscillator is considered. The control technique is implemented by coupling the active absorber with the plant via a specific set of quadratic nonlinearities. The perturbation method of multiple scales is employed to find the first-order approximate solutions to the governing equations. Then a stability analysis is conducted for the response of the system and the performance of the control strategy is investigated. A parametric investigation is carried out to see the effects of changing the damping ratio of the absorber, and the value of the feedback gain on the responses of the plant and the absorber. Finally, the perturbation solutions are verified by numerical integration of the governing differential equations. It is demonstrated that the saturation-based control method is effective in reducing the vibration response of the self-excited plant when the absorber’s frequency is exactly tuned to one-half the natural frequency of the plant.  相似文献   

4.
针对潜艇侦查望远镜举升水面时产生的涡激振动现象,该文建立了悬臂柱体结构受气-液两种不同横向流作用下的涡激振动理论模型.研究了两种流体不同的分布比和密度比对柱体结构涡激振动行为的影响规律.基于Galerkin法和Runge-Kutta法,得到了柱体结构涡激振动响应的数值结果.研究表明,柱体结构的涡激振动锁频区随着流体分布比的增大而增大,自由端最大幅值随着流体分布比的增大先增大后减小.当分布比为0.5附近时,振幅出现极大值,该极大值随着流体密度比的减小呈现明显的增大趋势.此外,柱体的动力学行为随着流体分布比的变化呈现出周期和多周期等振动模式.该研究可为潜艇侦查望远镜结构的设计与分析提供理论指导意义.  相似文献   

5.
随着微机电科技的进步,利用环境振动进行系统自供电已经成为目前非线性动力学研究的热点.将质量-弹簧-阻尼系统与双稳态振动能量捕获系统相结合,提出了附加非线性振子的双稳态电磁式振动能量捕获器,建立系统的力学模型及控制方程.通过数值仿真研究了简谐激励下质量比和调频比发生变化时附加非线性振子的双稳态电磁式振动能量捕获器的动力学响应.通过与附加线性振子双稳态系统的对比,获得了上述参数对附加非线性振子的双稳态电磁式振动能量捕获器发生大幅运动的影响规律,显示出附加非线性振子的双稳态电磁式振动能量捕获器的优越性,并获得了附加非线性振子的双稳态电磁式振动能量捕获器发生连续大幅混沌运动的最优参数配合.上述研究结果为双稳态电磁式振动能量捕获系统的相关研究提供了理论基础.  相似文献   

6.
In this paper, we consider the Kuramoto–Sivashinsky equation (KSE), which describes the long-wave motions of a thin film over a vertical plane. Solution procedures for the KSE often yield a large or infinite-dimensional nonlinear system. We first discuss two reduced-order methods, the approximate inertial manifold and the proper orthogonal decomposition, and show that these methods can be used to obtain a reduced-order system that can accurately describe the dynamics of the KSE. Moreover, from this resulting reduced-order system, the feedback controller can readily be designed and synthesized. For our control techniques, we use the linear and nonlinear quadratic regulator methods, which are the first- and second-order approximated solutions of the Hamilton–Jacobi–Bellman equation, respectively. Numerical simulations comparing the performance of the reduced-order-based linear and nonlinear controllers are presented.  相似文献   

7.
This study performs a coupled torsion–bending vibration responses of a gear-rotor-bearing system, which has taken time varying mesh stiffness, nonlinear bearing force and gear eccentricity into account. A 16 DOF nonlinear dynamic model of gear-rotor-rolling bearing transmission system with bending–torsion coupling is established to obtain the dynamic response to the changes of different parameters. Based on the Runge–Kutta numerical method, the dynamics of the system is investigated, which describes torsional and bending vibration properties of the system more comprehensively. The vibration responses of the gear-rotor-bearing system are discussed, and the effects of gear eccentricity and rotational speed on the system are investigated in detail. The results show that gear eccentricity and rotational speed have influences on the meshing state of gear teeth, the vibration amplitudes, the frequency multiplication and random frequency components. When the system is in a lower rotational speed, the eccentricity has greater effects on the vibration response. The proposed model and numerical results provide a useful source of reference for engineers in designing and vibration controlling such systems.  相似文献   

8.
Anna Herzog  Lars Panning 《PAMM》2010,10(1):245-246
Turbine blades are subjected to vibrations caused by static and dynamic loads. To avoid damage, the arising dynamic stresses can be reduced by generating friction contacts between the blades leading to additional damping. The resulting nonlinear equations of motion of the blade dynamics can be solved by the Multiharmonic Balance Method (MHBM), which is described in this paper. With the MHBM, it is possible to consider a multiharmonic excitation as well as a response consisting of several harmonics. In this paper, the MHBM is applied to both a simple 1 DOF nonlinear oscillator and a cyclic model of a blade integrated disk (blisk). (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
This paper investigates the interaction effect of horizontal fast harmonic parametric excitation and time delay on self-excited vibration in van der Pol oscillator. We apply the method of direct partition of motion to derive the main autonomous equation governing the slow dynamic of the oscillator. The method of averaging is then performed on the slow dynamic to obtain a slow flow which is analyzed for equilibria and periodic motion. This analysis provides analytical approximations of regions in parameter space where periodic self-excited vibrations can be eliminated. A numerical study is performed on the original oscillator and compared to analytical approximations. It was shown that in the delayed case, horizontal fast harmonic excitation can eliminate undesirable self-excited vibrations for moderate values of the excitation frequency. In contrast, the case without delay requires large excitation frequency to eliminate such motions. This work has application to regenerative behavior in high-speed milling.  相似文献   

10.
A self-excited friction oscillator has been designed and manufactured to carry out experimental analysis of dry friction phenomenon. A mathematical model of this oscillator has been formulated. The influence of the different types of classical friction characteristics on the dynamical behaviour of the model is investigated by way of numerical analysis. A comparison with dynamics of real oscillator is presented and some reasons of observed differences are explained. A particular analysis of experimental data leads to the confirmation of non-reversible friction characteristics and allows to formulate a hypothesis that a course of such characteristics also depends on value (not only on the sign) of acceleration.  相似文献   

11.
A large number of mathematical questions are related to problems of parametric and autoparametric resonance in engineering models. The linearized problems generally produce systems of differential equations with periodic coefficients with special stability and genericity questions. We start by reviewing linear systems while discussing normal form techniques and bifurcation results. The linear and nonlinear analysis is illustrated in three cases: rotor dynamics, autoparametric resonance of a parametric oscillator and autoparametric resonance of a self-excited oscillator. In all cases bifurcations, symmetry considerations and attraction to nonclassical limit sets play a part.  相似文献   

12.
We investigate the interaction effect of fast vertical parametric excitation and time delay on self-oscillation in a van der Pol oscillator. We use the method of direct partition of motion to derive the main autonomous equation governing the slow dynamic and then we apply the averaging technique on this slow dynamic to derive a slow flow. In particular we analyze the slow flow to analytically approximate regions where self-excited vibrations can be eliminated. Numerical integration is performed and compared to the analytical results showing a good agreement for small time delay. It was shown that vertical parametric excitation, in the presence of delay, can suppress self-excited vibrations. These vibrations, however, persist for all values of the excitation frequency in the case of a fast vertical parametric excitation without delay [Bourkha R, Belhaq M. Effect of fast harmonic excitation on a self-excited motion in van der Pol oscillator. Chaos, Solitons & Fractals, 2007;34(2):621–7.].  相似文献   

13.
This paper is focused on nonlinear dynamic response of internal cantilever beam system on a steadily rotating ring via a nonlinear dynamic model. The analytical approximate solutions to the oscillation motion are obtained by combining Newton linearization with Galerkin's method. Numerical solutions could be obtained by using the shooting method on the exact governing equation. Compared with numerical solutions, the approximate analytical solutions here show excellent accuracy and rapid convergence. Two different kinds of oscillating internal cantilever beam system on a steadily rotating ring are investigated by using the analytical approximate solutions. These include symmetric vibration through three equilibrium points, and asymmetric vibration through the only trivial equilibrium point. The effects of geometric and physical parameters on dynamic response are useful and can be easily applied to design practical engineering structures. In particular, the ring angular velocity plays a significant role on the period and periodic solution of the beam oscillation. In conclusion, the analytical approximate solutions presented here are sufficiently precise for a wide range of oscillation amplitudes.  相似文献   

14.
Dynamic mode decomposition (DMD) is an Arnoldi-like method based on the Koopman operator. It analyzes empirical data, typically generated by nonlinear dynamics, and computes eigenvalues and eigenmodes of an approximate linear model. Without explicit knowledge of the dynamical operator, it extracts frequencies, growth rates, and spatial structures for each mode. We show that expansion in DMD modes is unique under certain conditions. When constructing mode-based reduced-order models of partial differential equations, subtracting a mean from the data set is typically necessary to satisfy boundary conditions. Subtracting the mean of the data exactly reduces DMD to the temporal discrete Fourier transform (DFT); this is restrictive and generally undesirable. On the other hand, subtracting an equilibrium point generally preserves the DMD spectrum and modes. Next, we introduce an ??optimized?? DMD that computes an arbitrary number of dynamical modes from a data set. Compared to DMD, optimized DMD is superior at calculating physically relevant frequencies, and is less numerically sensitive. We test these decomposition methods on data from a two-dimensional cylinder fluid flow at a Reynolds number of?60. Time-varying modes computed from the DMD variants yield low projection errors.  相似文献   

15.
The paper deals with modelling of vibration of shaft systems with gears and rolling-element bearings using the modal synthesis method with DOF number reduction. The influence of the nonlinear bearing and gearing contact forces with the possibility of the contact interruption is respected. The gear drive nonlinear vibrations caused by internal excitation generated in gear meshing, accompanied by impact and chaotic motions are studied. The theory is applied to a simple test-gearbox. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The non-smooth nonlinear energy sink (NSNES) is used to suppress the vibration of the rotor-blade system. Firstly, the structure and working principle of the NSNES for rotor-blade system are introduced. Then, the dynamics model of the rotor-blade-NSNES system is established by Lagrangian method. And then, numerical simulations are applied to evaluate the vibration suppression ability of the NSNES on rotor and blade. The results show that the suppression rates of NSNES on the rotor and the blade can reach 81% and 74% in steady state resonance under given parameters, respectively; and for transient vibration of blade, a 1.85 times dissipating speed is obtained in rotor-blade system with NSNES than that without NSNES. In particular, NSNES has better vibration suppression capability than linear dynamic vibration absorber (LDVA) when both have the same vibration absorption mass.  相似文献   

17.
Numerical simulations of vortex-induced vibration of a two-dimensional elastic circular cylinder under the uniform flow are calculated when Reynolds number is 200. In order to achieve the vortex-induced vibration, two-dimensional incompressible Navier–Stokes equations are solved with the space–time finite element method, the equations of the cylinder motion are solved with the new explicit integral method and the emeshing is achieved by the spring analogy technology. Considering vortex-induced vibration with the low reduced damping parameters, the variety trends of the lift coefficient, the drag coefficient, the displacement of cylinder are analyzed under different oscillating frequencies of cylinder. The nonlinear phenomena of locked-in, beat and phaseswith are captured successfully. The limit cycle and bifurcation of lift coefficient and displacement are analyzed. Besides, the Poincare sections of the lift coefficient are used for discussing the bifurcation of periodic solution. There are some differences in nonlinear characteristics between the results of the one degree of freedom cylinder model and those of the two degrees of freedom cylinder model. The streamwise vibration has a certain effect on the lateral vibration.  相似文献   

18.
Previous nonlinear spinning disk models neglected the in-plane inertia of the disk since this permits the use of a stress function. This paper aims to consider the effect of including the in-plane inertia of the disk on the resulting nonlinear dynamics and to construct approximate solutions that capture the new dynamics. The inclusion of the in-plane inertia results in a nonlinear coupling between the in-plane and transverse vibrations of the spinning disk. The full nonlinear partial differential equations are simplified to a simpler nonlinear two degrees of freedom model via the method of Galerkin. A canonical perturbation approach is used to derive an approximate solution to this simpler nonlinear problem. Numerical simulations are used to evaluate the effectiveness of the approximate solution. Through the use of these analytical and numerical tools, it becomes apparent that the inclusion of in-plane inertia gives rise to new phenomena such as internal resonance and the possibility of instability in the system that are not predicted if the in-plane inertia is ignored. It is also demonstrated that the canonical perturbation approach can be used to produce an effective approximate solution.  相似文献   

19.
The Rayleigh oscillator is one canonical example of self-excited systems. However, simple generalizations of such systems, such as the Rayleigh–Duffing oscillator, have not received much attention. The presence of a cubic term makes the Rayleigh–Duffing oscillator a more complex and interesting case to analyze. In this work, we use analytical techniques such as the Melnikov theory, to obtain the threshold condition for the occurrence of Smale-horseshoe type chaos in the Rayleigh–Duffing oscillator. Moreover, we examine carefully the phase space of initial conditions in order to analyze the effect of the nonlinear damping, and in particular how the basin boundaries become fractalized.  相似文献   

20.
We study the structure of the periodic steady-state solutions of forced and damped strongly nonlinear coupled oscillators in the frequency–energy domain by constructing forced and damped frequency – energy plots (FEPs). Specifically, we analyze the steady periodic responses of a two degree-of-freedom system consisting of a grounded forced linear damped oscillator weakly coupled to a strongly nonlinear attachment under condition of 1:1 resonance. By performing complexification/averaging analysis we develop analytical approximations for strongly nonlinear steady-state responses. As an application, we examine vibration isolation of a harmonically forced linear oscillator by transferring and confining the steady-state vibration energy to the weakly coupled strongly nonlinear attachment, thereby drastically reducing its steady-state response. By comparing the nonlinear steady-state response of the linear oscillator to its corresponding frequency response function in the absence of a nonlinear attachment we demonstrate the efficacy of drastic vibration reduction through steady-state nonlinear targeted energy transfer. Hence, our study has practical implications for the effective passive vibration isolation of forced oscillators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号