首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We study the adaptive dynamics of predator–prey systems modeled by a dynamical system in which the traits of predators and prey are allowed to evolve by small mutations. When only the prey are allowed to evolve, and the size of the mutational change tends to 0, the system does not exhibit long term prey coexistence and the trait of the resident prey type converges to the solution of an ODE. When only the predators are allowed to evolve, coexistence of predators occurs. In this case, depending on the parameters being varied, we see that (i) the number of coexisting predators remains tight and the differences in traits from a reference species converge in distribution to a limit, or (ii) the number of coexisting predators tends to infinity, and we calculate the asymptotic rate at which the traits of the least and most “fit” predators in the population increase. This last result is obtained by comparison with a branching random walk killed to the left of a linear boundary and a finite branching–selection particle system.  相似文献   

2.
In this paper, we study a periodic predator–prey system with prey impulsive diffusion in two patches. On the basis of comparison theorem of impulsive differential equation and other analysis methods, sufficient and necessary conditions on the predator–prey system where predator have not other food source are established. Two examples and numerical simulations are presented to illustrate the feasibility of our results. A conclusion is given in the end.  相似文献   

3.
We study a predator–prey model with the Allee effect on prey and whose dynamics is described by a system of stochastic differential equations assuming that environmental randomness is represented by noise terms affecting each population. More specifically, we consider a term that expresses the variability of the growth rate of both species due to external, unpredictable events. We assume that the intensities of these perturbations are proportional to the population size of each species. With this approach, we prove that the solutions of the system have sample pathwise uniqueness and bounded moments. Moreover, using an Euler–Maruyama-type numerical method we obtain approximated solutions of the system with different intensities for the random noise and parameters of the model. In the presence of a weak Allee effect, we show that long-term survival of both populations can occur. On the other hand, when a strong Allee effect is considered, we show that the random perturbations may induce the non-trivial attracting-type invariant objects to disappear, leading to the extinction of both species. Furthermore, we also find the Maximum Likelihood estimators for the parameters involved in the model.  相似文献   

4.
In this article, we consider the predator–prey system with Dirichlet boundary conditions which is used in the modelling of ecology. Under the assumptions of no growth conditions and integrable data, we prove the existence of weak-renormalized solutions to the predator–prey system.  相似文献   

5.
6.
In this paper, a predator–prey Leslie–Gower model with disease in prey has been developed. The total population has been divided into three classes, namely susceptible prey, infected prey and predator population. We have also incorporated an infected prey refuge in the model. We have studied the positivity and boundedness of the solutions of the system and analyzed the existence of various equilibrium points and stability of the system at those equilibrium points. We have also discussed the influence of the infected prey refuge on each population density. It is observed that a Hopf bifurcation may occur about the interior equilibrium taking refuge parameter as bifurcation parameter. Our analytical findings are illustrated through computer simulation using MATLAB, which show the reliability of our model from the eco-epidemiological point of view.  相似文献   

7.
8.
Based on the availability of prey and a simple predator–prey model, we propose a delayed predator–prey model with predator migration to describe biological control. We first study the existence and stability of equilibria. It turns out that backward bifurcation occurs with the migration rate as bifurcation parameter. The stability of the trivial equilibrium and the boundary equilibrium is delay-independent. However, the stability of the positive equilibrium may be delay-dependent. Moreover, delay can switch the stability of the positive equilibrium. When the positive equilibrium loses stability, Hopf bifurcation can occur. The direction and stability of Hopf bifurcation is derived by applying the center manifold method and the normal form theory. The main theoretical results are illustrated with numerical simulations.  相似文献   

9.
In this paper, a predator–prey–disease model with immune response in the infected prey is formulated. The basic reproduction number of the within-host model is defined and it is found that there are three equilibria: extinction equilibrium, infection-free equilibrium and infection-persistent equilibrium. The stabilities of these equilibria are completely determined by the reproduction number of the within-host model. Furthermore, we define a basic reproduction number of the between-host model and two predator invasion numbers: predator invasion number in the absence of disease and predator invasion number in the presence of disease. We have predator and infection-free equilibrium, infection-free equilibrium, predator-free equilibrium and a co-existence equilibrium. We determine the local stabilities of these equilibria with conditions on the reproduction and invasion reproduction numbers. Finally, we show that the predator-free equilibrium is globally stable.  相似文献   

10.
The disease effect on ecological systems is an important issue from mathematical and experimental point of view. In this paper, we formulate and analyze a predator–prey model for the susceptible population, infected population and their predator population with modified Leslie–Gower (or Holling–Tanner) functional response. Mathematical analysis of the model equations with regard to invariance of nonnegativity and boundedness of solutions, local and global stability of the biological feasible equilibria and permanence of the system are presented. When the rate of infection crosses a critical value, we determine that the strictly positive interior equilibrium undergoes Hopf bifurcation. From our numerical simulations, we observe that the predation rate also plays an important role on the dynamic behavior of our system.  相似文献   

11.
This paper deals with the existence and nonexistence of nonconstant positive steady-state solutions to a ratio-dependent predator–prey model with diffusion and with the homogeneous Neumann boundary condition. We demonstrate that there exists a0(b) satisfying 0<a0(b)<m1 for 0<b<m1, such that if 0<b<m1 and a0(b)<a<m1, then the diffusion can create nonconstant positive steady-state solutions; whereas the diffusion cannot do provided a>m1.  相似文献   

12.
In this paper, we analyze the spatial pattern of a predator–prey system. We get the critical line of Hopf and Turing bifurcation in a spatial domain. In particular, the exact Turing domain is given. Also we perform a series of numerical simulations. The obtained results reveal that this system has rich dynamics, such as spotted, stripe and labyrinth patterns, which shows that it is useful to use the reaction–diffusion model to reveal the spatial dynamics in the real world.  相似文献   

13.
In this paper, we investigate a class of predator–prey model with age structure and discuss whether the model can undergo Bogdanov–Takens bifurcation. The analysis is based on the normal form theory and the center manifold theory for semilinear equations with non-dense domain combined with integrated semigroup theory. Qualitative analysis indicates that there exist some parameter values such that this predator–prey model has an unique positive equilibrium which is Bogdanov–Takens singularity. Moreover, it is shown that under suitable small perturbation, the system undergoes the Bogdanov–Takens bifurcation in a small neighborhood of this positive equilibrium.  相似文献   

14.
This paper deals with the behavior of solutions to the reaction–diffusion system under homogeneous Neumann boundary condition, which describes a prey–predator model with nonlocal delay. Sufficient conditions for the global stability of each equilibrium are derived by the Lyapunov functional and the results show that the introduction of stage-structure into predator positively affects the coexistence of prey and predator. Numerical simulations are performed to illustrate the results.  相似文献   

15.
In this paper, we propose a bioeconomic differential algebraic predator–prey model with Holling type II functional response and nonlinear prey harvesting. As the nonlinear prey harvesting is introduced, the proposed model displays a complex dynamics in the predator–prey plane. Taking into account of the economic factor, our predator–prey system is established by bioeconomic differential algebraic equations. The effect of economic profit on the proposed model is analyzed by viewing it as a bifurcation parameter. By jointly using the normal form of differential algebraic models and the bifurcation theory, the stability and bifurcations (singularity induced bifurcation, Hopf bifurcation) are discussed. These results obtained here reveal richer dynamics of the bioeconomic differential algebraic predator–prey model with nonlinear prey harvesting, and suggest a guidance for harvesting in the practical word. Finally, numerical simulations are given to demonstrate the results.  相似文献   

16.
A predator–prey model with logistic growth in prey is modified by introducing an SIS parasite infection in the prey. We have studied the combined effect of environmental toxicant and disease on prey–predator system. It is assumed in this paper that the environmental toxicant affects both prey and predator population and the infected prey is assumed to be more vulnerable to the toxicant and predation compared to the sound prey individuals. Thresholds are identified which determine when system persists and disease remains endemic.  相似文献   

17.
The local dynamics of a two-trophic chain in the presence of both overcrowding and undercrowding effects on prey growth is investigated. The starting point is given by a general predator–prey system, in which the prey growth rate and the trophic interaction function are defined only by some properties determining their shapes; in particular, the prey growth function is assumed to model a strong Allee effect. A stability analysis of the system using the predation efficiency as bifurcation parameter is performed; conditions for the existence and stability of extinction and coexistence equilibrium states are determined, and peculiar features of the dynamics exhibited by the system are presented, with particular attention to limit cycles and bistability situations. Results are compared with those obtained when overcrowding and undercrowding effects are considered separately.  相似文献   

18.
19.
20.
We consider three species system, namely prey (roach), predator (pike) and plankton. We derive persistence and extinction conditions of the populations. Using coincidence degree theory, we determine conditions for which the system has a periodic solution. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号