首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
复杂动态网络的有限时间同步   总被引:1,自引:0,他引:1  
陈姚  吕金虎 《系统科学与数学》2009,29(10):1419-1430
复杂网络无处不在,同步是自然界中广泛存在的一类非常重要的非线性现象.过去10年,人们对复杂网络的同步开展了系统而深入的研究,包括恒等同步、广义同步、簇同步以及部分同步等.上述大部分结果中对同步速度的刻画往往是渐进的,只有当时间趋于无穷的时候,网络才能实现同步,而对于网络能够在多长时间内可以实现同步却知之甚少.作者以几类典型的非线性耦合的复杂动态网络为例,深入探讨了复杂动态网络的有限时间同步的规律.具体而言,基于上述几类典型的复杂动态网络,证明了在某些合适的条件下,网络能够在有限时间内实现精确同步.此外,用一个典型的数值仿真实例验证了上述有限时间同步的准则.有限时间同步有效地避免了网络只有在无穷时刻才能实现同步的问题,对网络同步的实际工程应用具有基本的现实意义.  相似文献   

2.
We show that for large coupling delays the synchronizability of delay-coupled networks of identical units relates in a simple way to the spectral properties of the network topology. The master stability function used to determine stability of synchronous solutions has a universal structure in the limit of large delay: it is rotationally symmetric around the origin and increases monotonically with the radius in the complex plane. We give details of the proof of this structure and discuss the resulting universal classification of networks with respect to their synchronization properties. We illustrate this classification by means of several prototype network topologies.  相似文献   

3.
In this paper, projective lag synchronization of the general complex dynamical networks with different nodes is investigated. Combining Barbalat’s lemma with adaptive control technique, the adaptive feedback controllers are constructed to achieve projective lag synchronization between the dynamical network with diverse nodes and arbitrary desired trajectory. The presented synchronization method can be applied to any complex networks. It is discovered that the update gains, the time delay, the network size and the network topology have influence on the synchronization effect. Furthermore, projective lag synchronization of the dynamical networks can still be efficiently realized in presence of noise and parameter perturbations. Corresponding numerical simulations are performed to validate the effectiveness and robustness of the proposed synchronization scheme.  相似文献   

4.
In this paper, the globally exponential synchronization of delayed complex dynamical networks with impulsive and stochastic perturbations is studied. The concept named “average impulsive interval” with “elasticity number” of impulsive sequence is introduced to get a less conservative synchronization criterion. By comparing with existing results, in which maximum or minimum of impulsive intervals are used to derive the synchronization criterion, the proposed synchronization criterion increases (or decreases) the impulse distances, which leads to the reduction of the control cost (or enhance the robustness of anti-interference) as the most important characteristic of impulsive synchronization techniques. It is discovered in our criterion that “elasticity number” has influence on synchronization of delayed complex dynamical networks but has no influence on that of non-delayed complex dynamical networks. Numerical simulations including a small-world network coupled with delayed Chua’s circuit are given to show the effectiveness and less conservativeness of the theoretical results.  相似文献   

5.
Generalized function projective (lag, anticipated and complete) synchronization between two different complex networks with nonidentical nodes is investigated in this paper. Based on Barbalat’s lemma, some sufficient synchronization criteria are derived by applying the nonlinear feedback control. Although previous work studied function projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In our work, the dynamics of the nodes of the complex networks are any chaotic systems without the limitation of the partial linearity. In addition, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. Numerical simulations further verify the effectiveness and feasibility of the proposed synchronization method. Numeric evidence shows that the synchronization rate is sensitively influenced by the feedback strength, the time delay, the network size and the network topological structure.  相似文献   

6.
姚洪兴  谢勇  王树国 《应用数学》2012,25(2):460-466
主要研究了带有时变耦合部分且非恒定节点含有变时滞复杂网络的同步问题.利用Lyapunov函数理论,设计有效的控制函数并获得一些简单的同步准则,使得属于不同簇的复杂网络能同步到任意光滑的状态.最后给以一数值仿真的例子验证了该理论的有效性.  相似文献   

7.
文章研究了基于非周期间歇性控制的具有多重权值和耦合时滞的复杂网络固定时间同步问题.通过构建具有多重权值的复杂网络模型,并基于固定时间稳定性引理和矩阵理论,给出了实现复杂网络固定时间同步的充分条件.此外,文章设计了固定时间非周期切换控制器,获得了实现复杂网络同步的时间上界的估计值.结论证明了实现网络同步的时间与网络的初始状态无关,最后数值模拟说明了理论结果的正确性和有效性.  相似文献   

8.
This paper proposes an approach of finite-time synchronization to identify the topological structure and unknown parameters simultaneously for under general complex dynamical networks. Based on the finite-time stability theory, an effective control input and a feedback control with an updated law are designed to realize finite-time synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously. Since finite-time topology identification means the suboptimum in identified time, the results of this paper are important. Several useful criteria for finite-time synchronization are given. Finally, two examples simulations for supporting the theoretical results are also provided.  相似文献   

9.
The present paper investigates the issues of impulsive synchronization seeking in general complex delayed dynamical networks with nonsymmetrical coupling. By establishing the extended Halanay differential inequality on impulsive delayed dynamical systems, some simple yet generic sufficient conditions for global exponential synchronization of the impulsive controlled delayed dynamical networks are derived analytically. Compared with some existing works, the distinctive features of these sufficient conditions indicate two aspects: on the one hand, these sufficient conditions can provide an effective impulsive control scheme to synchronize an arbitrary given delayed dynamical network to a desired synchronization state even if the original given network may be asynchronous itself. On the other hand, the controlled synchronization state can be selected as a weighted average of all the states in the network for the purpose of practical control strategy, which reveals the contributions and influences of various nodes in synchronization seeking processes of the dynamical networks. It is shown that impulses play an important role in making the delayed dynamical networks globally exponentially synchronized. Furthermore, the results are applied to a typical nearest-neighbor unidirectional time-delay coupled networks composed of chaotic FHN neuron oscillators, and numerical simulations are given to demonstrate the effectiveness of the proposed control methodology.  相似文献   

10.
In this paper, we investigate finite-time uniform stability of functional differential equations with applications in network synchronization control. First, a Razumikhin-type theorem is derived to ensure finite-time uniform stability of functional differential equations. Based on the theoretical results, finite-time uniform synchronization is proposed for a class of delayed neural networks and delayed complex dynamical networks by designing nontrivial and simple control strategies and some novel criteria are established. Especially, a feasible region of the control parameters for each neuron is derived for the realization of finite-time uniform synchronization of the addressed neural networks, which provide a great convenience for the application of the theoretical results. Finally, two numerical examples with numerical simulations are provided to show the effectiveness and feasibility of the theoretical results.  相似文献   

11.
Synchronization in large ensembles of coupled interacting units is a fundamental phenomenon, which is helpful for the understanding of working mechanisms in neuronal networks, social network, etc. In this paper, we will investigate the synchronization phenomenon in a network model. A feedback control scheme is proposed for the synchronization of the given complex networks. The obtained result indicates that synchronization can be achieved for growing chaotic network model. Method enhance the synchronizability of the given model are given at the same time. Finally, numerical simulations are given to show the effectiveness of obtained results.  相似文献   

12.
13.
This paper studies the pinning impulsive synchronization problem for a class of complex dynamical networks with time-varying delay. By applying the Lyapunov stability theory and mathematical analysis technique, sufficient verifiable criterion for the synchronization of delayed complex dynamical networks with small delay is derived analytically. It is shown that synchronization can be achieved by only impulsively controlling a small fraction of network nodes. Moreover, a novel sufficient condition is constructed to relax the restrictions on the size of time-delay and guarantee the synchronization of concerned networks with large delay. Two numerical examples are presented to illustrate the effectiveness of the obtained results.  相似文献   

14.
In this paper, complex networks with community structure and nonidentical nodes are investigated. The cluster mixed synchronization of these networks is studied by using some linear pinning control schemes. Only the nodes in one community which have direct connections to the nodes in other communities are controlled. Adaptive coupling strength method is adopted to achieve the synchronization as well. According to Lyapunov stability theory, several sufficient conditions for the network to achieve cluster mixed synchronization are derived. Numerical simulations are provided to verify the correctness and the effectiveness of the theoretical results.  相似文献   

15.
The cumulative degree distributions of transport networks, such as air transportation networks and respiratory neuronal networks, follow power laws. The significance of power laws with respect to other network performance measures, such as throughput and synchronization, remains an open question. Evolving methods for the analysis and design of air transportation networks must be able to address network performance in the face of increasing demands and the need to contain and control local network disturbances, such as congestion. Toward this end, we investigate functional relationships that govern the performance of transport networks; for example, the links between the first nontrivial eigenvalue, λ2, of a network's Laplacian matrix—a quantitative measure of network synchronizability—and other global network parameters. In particular, among networks with a fixed degree distribution and fixed network assortativity (a measure of a network's preference to attach nodes based on a similarity or difference), those with small λ2 are shown to be poor synchronizers, to have much longer shortest paths and to have greater clustering in comparison to those with large λ2. A simulation of a respiratory network adds data to our investigation. This study is a beginning step in developing metrics and design variables for the analysis and active design of air transport networks. © 2008 Wiley Periodicals, Inc. Complexity, 2009  相似文献   

16.
This paper mainly investigates the impulsive synchronization of a general complex continuous and discrete-time dynamical network. Firstly, for the continuous complex networks, we give a sufficient condition to guarantee its synchronization. When the sufficient condition is not satisfied, the impulsive controllers are utilized, and some novel criteria are derived to guarantee the network synchronization in this case. What is more significant is that the similar work is extended to the discrete-time networks model. Finally, the results are, respectively, illustrated by a continuous network composed with the chaotic Chen oscillators and a discrete-time network consisting of Hénon map. All numerical simulations verify the effectiveness of the theoretical analysis.  相似文献   

17.
This paper investigates the generalized outer synchronization (GOS) between two non-dissipatively coupled complex dynamical networks (CDNs) with different time-varying coupling delays. Our drive-response networks also possess nonlinear inner coupling functions and time-varying outer coupling configuration matrices. Besides, in our network models, the nodes in the same network are nonidentical and the nodes in different networks have different state dimensions. Asymptotic generalized outer synchronization (AGOS) and exponential generalized outer synchronization (EGOS) are defined for our CDNs. Our main objective in this paper is to design AGOS and EGOS controllers for our drive-response networks via the open-plus-closed-loop control technique. Distinguished from most existing literatures, it is the partial intrinsic dynamics of each node in response network that is restricted by the QUAD condition, which is easy to be satisfied. Representative simulation examples are given to verify the effectiveness and feasibility of our GOS theoretical results in this paper.  相似文献   

18.
In this paper, some new criteria for lag synchronization between two or more complex networks are proposed based on the theory of state observer. Some adaptive controllers are designed to make the drive and response systems achieve lag synchronization, no matter whether the nodes in the two systems are with the same dynamical character or the coupling configuration matrices are nonidentical. In addition, based on the output coupling, the amount of coupling variables between two connected nodes is flexible, which can save a lot of channel resources, simplify the network topology and has more significant meanings in engineering applications. At last, the effects of the lag synchronization criteria are verified through some simulation experiments.  相似文献   

19.
A system moves randomly in a space of states X governed by a stochastic matrix R. From the dynamics alone a distance function is defined on X. This distance allows a coarse graining that is optimal with respect to the dynamics in the following sense: if all grains are of diameter less than ? then the coarse grained dynamics and original dynamics differ by less than ?, which is to say the coarse graining is commutative up to that level. Using this distance function two applications are considered: the creation of “words” or concepts in pattern recognition and the identification of communities in networks.  相似文献   

20.
The discovery of small-world and scale-free properties of many man-made and natural complex networks has attracted increasing attention. Of particular interest is how the structural properties of a network facilitate and constrain its dynamical behavior. In this paper we study the synchronization of weakly coupled limit-cycle oscillators in dependence on the network topology as well as the dynamical features of individual oscillators. We show that flexible oscillators, characterized by near zero values of divergence, express maximal correlation in broad-scale small-world networks, whereas the non-flexible (rigid) oscillators are best correlated in more heterogeneous scale-free networks. We found that the synchronization behavior is governed by the interplay between the networks global efficiency and the mutual frequency adaptation. The latter differs for flexible and rigid oscillators. The results are discussed in terms of evolutionary advantages of broad-scale small-world networks in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号