首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The pulsatile flow of blood through catheterized artery has been studied in this paper by modeling blood as Herschel–Bulkley fluid and the catheter and artery as rigid coaxial circular cylinders. The Herschel–Bulkley fluid has two parameters, the yield stress θ and the power index n. Perturbation method is used to solve the resulting quasi-steady nonlinear coupled implicit system of differential equations. The effects of catheterization and non-Newtonian nature of blood on yield plane locations, velocity, flow rate, wall shear stress and longitudinal impedance of the artery are discussed. The existence of two yield plane locations is investigated and their dependence on yield stress θ, amplitude A, and time t are analyzed. The width of the plug core region increases with increasing value of yield stress at any time. The velocity and flow rate decrease, whereas wall shear stress and longitudinal impedance increase for increasing value of yield stress with other parameters held fixed. On the other hand, the velocity, flow rate and wall shear stress decrease but resistance to flow increases as the catheter radius ratio (ratio of catheter radius to vessel radius) increases with other parameters fixed. The results for power law fluid, Newtonian fluid and Bingham fluid are obtained as special cases from this model.  相似文献   

2.
The pulsatile flow of blood through mild stenosed artery is studied. The effects of pulsatility, stenosis and non-Newtonian behavior of blood, treating the blood as Herschel–Bulkley fluid, are simultaneously considered. A perturbation method is used to analyze the flow. The expressions for the shear stress, velocity, flow rate, wall shear stress, longitudinal impedance and the plug core radius have been obtained. The variations of these flow quantities with different parameters of the fluid have been analyzed. It is found that, the plug core radius, pressure drop and wall shear stress increase with the increase of yield stress or the stenosis height. The velocity and the wall shear stress increase considerably with the increase in the amplitude of the pressure drop. It is clear that for a given value of stenosis height and for the increasing values of the stenosis shape parameter from 3 to 6, there is a sharp increase in the impedance of the flow and also the plots are skewed to the right-hand side. It is observed that the estimates of the increase in the longitudinal impedance increase with the increase of the axial distance or with the increase of the stenosis height. The present study also brings out the effects of asymmetric of the stenosis on the flow quantities.  相似文献   

3.
研究食道中蠕动传输的流体力学.对任意的波形和任意的管道长度,建立起流变学流体蠕动传输的数学模型.用粘性流体的Ostwald-de Waele幂定律,描述非Newton流体的流动特性.解析公式化模型,详细且精确地给出食物块在食道中蠕动传输相关的一些重要性质.分析中应用了润滑理论,本研究特别适合于Reynolds数不大的情况.将食道看作环形的管道,通过食道壁周期性的收缩来传输食物块.就单个波和周期性收缩一组波的传播,研究与传输过程有关变量的变化,如压力、流速、食物颗粒轨迹以及流量等.局部压力的变化,对流变指数n有着高度的敏感性.研究结果清晰地表明,食物块在食道中蠕动传输时,Newton流体或流变学流体构成的连续流体,以组合波传播比大间隔单波传播,传输效率要高得多.  相似文献   

4.
The peristaltic flow of a Jeffrey fluid in a vertical porous stratum with heat transfer is studied under long wavelength and low Reynolds number assumptions. The nonlinear governing equations are solved using perturbation technique. The expressions for velocity, temperature and the pressure rise per one wave length are determined. The effects of different parameters on the velocity, the temperature and the pumping characteristics are discussed. It is observed that the effects of the Jeffrey number λ1, the Grashof number Gr, the perturbation parameter N = EcPr, and the peristaltic wall deformation parameter ϕ are the strongest on the trapping bolus phenomenon. The results obtained for the flow and heat transfer characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear-thinning reduces the wall shear stress.  相似文献   

5.
研究了两个不同的非牛顿血液流动模型:低粘性剪切简单幂律模型和低粘性剪切及粘弹性振荡流的广义Maxwell模型.同时利用这两个非牛顿模型和牛顿模型,研究了磁场中刚性和弹性直血管中血液的正弦型脉动.在生理学条件下,大动脉中血液的弹性对其流动性态似乎并不产生影响,单纯低粘性剪切模型可以逼真地模拟这种血液流动.利用高剪切幂律模型模拟弹性血管中的正弦型脉动流,发现在同一压力梯度下,与牛顿流体相比较,幂律流体的平均流率和流率变化幅度都更小.控制方程用Crank-Niclson方法求解.弹性动脉中血液受磁场作用是产生此结果的直观原因.在主动脉生物流的模拟中,与牛顿流体模型比较,发现在匹配流率曲线上,幂律模型的平均壁面剪切应力增大,峰值壁面剪切应力减小.讨论了弹性血管横切磁场时的血液流动,评估了血管形状和表面不规则等因素的影响.  相似文献   

6.
Pulsatile flow of blood through mild stenosed narrow arteries is analyzed by treating the blood in the core region as a Casson fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is used to solve the coupled implicit system of non-linear differential equations. The expressions for velocity, wall shear stress, plug core radius, flow rate and resistance to flow are obtained. The effects of pulsatility, stenosis, peripheral layer and non-Newtonian behavior of blood on these flow quantities are discussed. It is found that the pressure drop, plug core radius, wall shear stress and resistance to flow increase with the increase of the yield stress or stenosis size while all other parameters held constant. The percentage of increase in the resistance to flow over the uniform diameter tube is considerably very low for the present two-fluid model compared with those of the single-fluid model.  相似文献   

7.
Previous work on the resistance to flow ratio and wall shear ratio of non-Newtonian blood flow through arteries containing aneurisms and stenoses has considered only Power Law and Casson models of fluid behaviour. Here a Bingham fluid is used to model blood. Flow through both constrictions and dilatations is considered. The effects of both a single diseased portion and pairs of abnormal wall segments in close proximity to each other are investigated. Comparison is made with earlier studies. Particular attention is paid to the effects of a post-stenotic dilatation as the ameorlation of the increase in resistance to flow ratio caused by such a situation is clinically relevant.  相似文献   

8.
This study analyses the pulsatile flow of blood through mild stenosed narrow arteries, treating the blood in the core region as a Casson fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is employed to solve the resulting coupled implicit system of non-linear partial differential equations. The expressions for shear stress, velocity, wall shear stress, plug core radius, flow rate and longitudinal impedance to flow are obtained. The effects of pulsatility, stenosis depth, peripheral layer thickness, body acceleration and non-Newtonian behavior of blood on these flow quantities are discussed. It is noted that the plug core radius, wall shear stress and longitudinal impedance to flow increase as the yield stress and stenosis depth increase and they decrease with the increase of the body acceleration, pressure gradient, width of the peripheral layer thickness. It is observed that the plug flow velocity and flow rate increase with the increase of the pulsatile Reynolds number, body acceleration, pressure gradient and the width of the peripheral layer thickness and the reverse behavior is found when the yield stress, stenosis depth and lead angle increase. It is also recorded that the wall shear stress and longitudinal impedance to flow are considerably lower for the two-fluid Casson model than that of the single-fluid Casson model. It is found that the presence of body acceleration and peripheral layer influences the mean flow rate and mean velocity by increasing their magnitude significantly in the arteries.  相似文献   

9.
In this paper the effects catheterization and non-Newtonian nature of blood in small arteries of diameter less than 100 μm, on velocity, flow resistance and wall shear stress are analyzed mathematically by modeling blood as a Herschel–Bulkley fluid with parameters n and θ and the artery and catheter by coaxial rigid circular cylinders. The influence of the catheter radius and the yield stress of the fluid on the yield plane locations, velocity distributions, flow rate, wall shear stress and frictional resistance are investigated assuming the flow to be steady. It is shown that the velocity decreases as the yield stress increases for given values of other parameters. The frictional resistance as well as the wall shear stress increases with increasing yield stress, whereas the frictional resistance increases and the wall shear stress decreases with increasing catheter radius ratio k (catheter radius to vessel radius). For the range of catheter radius ratio 0.3–0.6, in smaller arteries where blood is modeled by Herschel–Bulkley fluid with yield stress θ = 0.1, the resistance increases by a factor 3.98–21.12 for n = 0.95 and by a factor 4.35–25.09 for n = 1.05. When θ = 0.3, these factors are 7.47–124.6 when n = 0.95 and 8.97–247.76 when n = 1.05.  相似文献   

10.
主动脉弓及分支血管内非稳态血流分析   总被引:2,自引:2,他引:0  
运用流体力学中的三维非定常Navier-Stokes方程作为血液流动的控制方程,并采用计算流体力学方法对人体主动脉弓及分支血管内非Newton(牛顿)血液黏度模型下血流进行瞬态数值模拟.分析了一个心动周期内不同时刻血流动力学特征参数的分布对动脉粥样硬化斑块形成的影响,并与Newton血液黏度模型下的血管壁面压力和壁面切应力特征参数进行对比.结果表明:与Newton血液模型相比,非Newton血液模型下血流分布更符合真实血流特性;在心动收缩期,分支血管外侧壁附近存在面积较大的低速涡流区,该区域内血管壁面压力与壁面切应力具有较大的变化量,血液中的血小板、脂质和纤维蛋白等易沉积,血管内壁易疲劳损伤并发生血管重构,促使动脉粥样硬化斑块形成;而在心动舒张期,分支血管内血流速度分布均匀,血管壁面压力与壁面切应力变化量较小,血管壁受到较小的应力作用,对动脉粥样硬化斑块形成的作用较小.  相似文献   

11.
The mathematical modelling and numerical simulation of the human cardiovascular system is playing nowadays an important role in the comprehension of the genesis and development of cardiovascular diseases. In this paper we deal with two problems of 3D modelling and simulation in this field, which are very often neglected in the literature. On the one hand blood flow in arteries is characterized by travelling pressure waves due to the interaction of blood with the vessel wall. On the other hand, blood exhibits non-Newtonian properties, like shear-thinning, viscoelasticity and thixotropy. The present work is concerned with the coupling of a generalized Newtonian fluid, accounting for the shear-thinning behaviour of blood, with an elastic structure describing the vessel wall, to capture the pulse wave due to the interaction between blood and the vessel wall. We provide an energy estimate for the coupling and compare the numerical results with those obtained with an equivalent fluid-structure interaction model using a Newtonian fluid.  相似文献   

12.
In the present paper, blood flow through a tapered artery with a stenosis is analyzed, assuming the flow is steady and blood is treated as non-Newtonian power law fluid model. Exact solution has been evaluated for velocity, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different types of tapered arteries (i.e. converging tapering, diverging tapering, non-tapered artery) have been examined for different parameters of interest. Some special cases of the problem are also presented.  相似文献   

13.
采用计算流体力学方法分别对6种狭窄率的颈动脉内非Newton瞬态血流进行流固耦合数值分析.研究了狭窄率对颈动脉内血流动力学分布的影响,以探索狭窄率与颈动脉内粥样斑块形成的关系.结果表明,狭窄率不同的颈动脉内血流动力学分布特性明显不同,与0.05,0.1,0.2,0.3和04这5种狭窄率的颈动脉内血流动力学分布特性相比,狭窄率为0.5的颈动脉内血流动力学分布独特,狭窄部位附近区域存在面积较大的低速涡流区;复杂血流作用下,该区域分布低壁面压力,异常壁面切应力,较大管壁形变量和von Mises应力;血流速度低使血液中脂质、纤维蛋白等大分子易沉积,低壁面压力引起的明显“负压”效应引发脑部供血障碍,异常壁面切应力作用下粥样斑块易破裂与脱落,并堵塞脑血管,较大的von Mises应力易引起应力集中,导致血管破裂,为脑卒中发生提供有利条件.因此,狭窄率越大对颈动脉内血流动力学分布的影响越显著,促进颈动脉粥样斑块形成与发展,并引发缺血性脑卒中.  相似文献   

14.
二阶非牛顿流体环管流动解析解   总被引:1,自引:1,他引:0  
本文采用积分变换的方法,找到了一类非牛顿流体在环形管道中不定常流动的解析解,并进行了数值计算,详尽分析了非牛顿性系数和其他各参数对二阶流体不定常流动的影响.指出当二阶流体非牛顿系数相同时,环管流与一般管流相比达到稳定的特征时间较短,并且相应的速度分布、平均速度分布的数值均较小,在外半径相同时,环管流内壁的剪应力较之一般管流,其大小随内半径的大小而变,环管流的外壁剪应力总相应地小于内壁剪应力.  相似文献   

15.
The problem of peristaltic flow of a Newtonian fluid with heat transfer in a vertical asymmetric channel through porous medium is studied under long-wavelength and low-Reynolds number assumptions. The flow is examined in a wave frame of reference moving with the velocity of the wave. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The analytical solution has been obtained in the form of temperature from which an axial velocity, stream function and pressure gradient have been derived. The effects of permeability parameter, Grashof number, heat source/sink parameter, phase difference, varying channel width and wave amplitudes on the pressure gradient, velocity, pressure drop, the phenomenon of trapping and shear stress are discussed numerically and explained graphically.  相似文献   

16.
The paper presents an analytical study of blood flow through a stenosed artery using a suitable mathematical model. The artery is modelled as an anisotropic viscoelastic cylindrical tube containing a non-Newtonian viscous incompressible fluid representing blood. The blood flow is assumed to be characterized by the Herschel–Bulkley model. The effect of the surrounding connective tissues on the motion of the arterial wall has been incorporated. Initially, the relevant solutions of the boundary value problem are obtained in the Laplace transform space, through the use of a suitable finite difference technique. Laplace inversion is carried out by employing suitable numerical techniques. Finally, the variations of the vascular wall displacements, the velocity distribution of the blood flow, the flux, the resistance to flow and the wall shear stress in the stenotic region are quantified through numerical computations and presented graphically.  相似文献   

17.
We present recent results on numerical modelling of non-Newtonian flow in two-dimensional compliant vessels with application in hemodynamics. Two models of the shear-thinning non-Newtonian fluids are considered and compared with the Newtonian model. For the structure problem the generalized string equation for radial symmetric tubes is used and extended to a stenosed vessel. A global iterative approach is used to approximate the fluid-structure interaction. At the end we present numerical experiments for selected non-Newtonian models, comparisons with the Newtonian model and the hemodynamic wall parameters: the wall shear stress and the oscillatory stress index. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The effect of a third-order fluid on the peristaltic transport in an asymmetric channel is studied. The wavelength of the peristaltic waves is assumed to be large compared to the varying channel width, whereas the wave amplitudes need not be small compared to the varying channel width. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The flow is investigated in a wave frame of reference moving with velocity of the wave. The effects of Deborah number, phase difference, varying channel width and wave amplitudes on the pumping characteristics, streamline pattern and trapping phenomena are investigated. It is observed that the trapping regions increase as the channel becomes more and more symmetric and the trapped bolus volume decreases for increasing Deborah number, phase difference and varying channel width whereas it increases for increasing flow rate and wave amplitudes. Furthermore, the obtained results could also have applications to a range of peristaltic flows for a variety of non-Newtonian fluids such as aqueous solutions of high-molecular weight polyethylene oxide and polyacrylamide.  相似文献   

19.
The problem of peristaltic transport of a hydromagnetic (electrically conducting) viscous incompressible fluid in an inclined planar channel having electrically insulated walls has been investigated under long-wavelength and low-Reynolds number assumptions. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The flow is investigated in a wave frame of reference moving with the velocity of the wave. Expressions for velocity field, shear stress and pressure gradient on the wall are obtained. The effects of different parameters entering into the problem are discussed numerically and explained graphically.  相似文献   

20.
A spectral element—Fourier method (SEM) for Direct Numerical Simulation (DNS) of the turbulent flow of non-Newtonian fluids is described and the particular requirements for non-Newtonian rheology are discussed. The method is implemented in parallel using the MPI message passing kernel, and execution times scale somewhat less than linearly with the number of CPUs, however this is more than compensated by the improved simulation turn around times. The method is applied to the case of turbulent pipe flow, where simulation results for a shear-thinning (power law) fluid are compared to those of a yield stress (Herschel–Bulkley) fluid at the same generalised Reynolds number. It is seen that the yield stress significantly dampens turbulence intensities in the core of the flow where the quasi-laminar flow region there co-exists with a transitional wall zone. An additional simulation of the flow of blood in a channel is undertaken using a Carreau–Yasuda rheology model, and results compared to those of the one-equation Spalart-Allmaras RANS (Reynolds-Averaged Navier–Stokes) model. Agreement between the mean flow velocity profile predictions is seen to be good. Use of a DNS technique to study turbulence in non-Newtonian fluids shows great promise in understanding transition and turbulence in shear thinning, non-Newtonian flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号