首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we present a direct new method for constructing the rational Jacobi elliptic solutions for nonlinear differential–difference equations, which may be called the rational Jacobi elliptic function method. We use the rational Jacobi elliptic function method to construct many new exact solutions for some nonlinear differential–difference equations in mathematical physics via the lattice equation. The proposed method is more effective and powerful for obtaining the exact solutions for nonlinear differential–difference equations.  相似文献   

2.
In this paper we mainly prove the existence and uniqueness of entropy solutions and the uniqueness of renormalized solutions to the general nonlinear elliptic equations in Musielak-Orlicz spaces. Moreover, we also obtain the equivalence of entropy solutions and renormalized solutions in the present conditions.  相似文献   

3.
We show that the superposition principle applies to coupled nonlinear Schrödinger equations with cubic nonlinearity where exact solutions may be obtained as a linear combination of other exact solutions. This is possible due to the cancelation of cross terms in the nonlinear coupling. First, we show that a composite solution, which is a linear combination of the two components of a seed solution, is another solution to the same coupled nonlinear Schrödinger equation. Then, we show that a linear combination of two composite solutions is also a solution to the same equation. With emphasis on the case of Manakov system of two-coupled nonlinear Schrödinger equations, the superposition is shown to be equivalent to a rotation operator in a two-dimensional function space with components of the seed solution being its coordinates. Repeated application of the rotation operator, starting with a specific seed solution, generates a series of composite solutions, which may be represented by a generalized solution that defines a family of composite solutions. Applying the rotation operator to almost all known exact seed solutions of the Manakov system, we obtain for each seed solution the corresponding family of composite solutions. Composite solutions turn out, in general, to possess interesting features that do not exist in the seed solution. Using symmetry reductions, we show that the method applies also to systems of N-coupled nonlinear Schrödinger equations. Specific examples for the three-coupled nonlinear Schrödinger equation are given.  相似文献   

4.
5.
It is proven that generalized coupled higher-order nonlinear Schrödinger equations possess the Painlevé property for two particular choices of parameters, using the Weiss–Tabor–Carnevale method and Kruskal’s simplification. Abundant families of periodic wave solutions are obtained by using the Jacobi elliptic function expansion method with the assistance of symbolic manipulation system, Maple. It is also shown that these solutions exactly degenerate to bright soliton, dark soliton and mixed dark and bright soliton solutions with physical interests.  相似文献   

6.
In this paper an extended Jacobian elliptic function expansion method, which is a direct and more powerful method, is used to construct more new exact doubly periodic solutions of the generalized Hirota–Satsuma coupled KdV system by using symbolic computation. As a result, sixteen families of new doubly periodic solutions are obtained which shows that the method is more powerful. When the modulus of the Jacobian elliptic functions m→1 or 0, the corresponding six solitary wave solutions and six trigonometric function (singly periodic) solutions are also found. The method is also applied to other higher-dimensional nonlinear evolution equations in mathematical physics.  相似文献   

7.
8.
Li  Yu Xin 《偏微分方程通讯》2013,38(6-7):909-940
In an unified and simple way we get lower bounds of the life-span of classical solutions to the Cauchy problems for fully nonlinear wave equaitons of the form kappav;u=F(u,Du,DxDu) for the space dimension n 3  相似文献   

9.
10.
The system of two coupled nonlinear Schrödinger equations has wide applications in physics. In the past, the main attention has been their solitary waves. Here we turn our attention to their periodic wave solutions. In this paper, the stability of the periodic solutions is studied analytically and the criteria for the stability are obtained. The long time evolution of the solutions to the coupled system is studied numerically for the unstable case emphasizing wave–wave interactions in nonlinear optics. Different kinds of evolution are observed depending on the coefficients of the system and the parameters of the unperturbed waves and perturbation. For certain ranges of parameters, the evolution appears to be periodic, while for some other ranges of parameters, solitary wave or solitary wave pairs can be excited among the irregular background although often the evolution is completely chaotic.  相似文献   

11.
12.
In this paper, by virtue of the Darboux transformation (DT) and symbolic computation, the quintic generalization of the coupled cubic nonlinear Schrödinger equations from twin-core nonlinear optical fibers and waveguides are studied, which describe the effects of quintic nonlinearity on the ultrashort optical pulse propagation in non-Kerr media. Lax pair of the equations is obtained and the corresponding DT is constructed. Moreover, one-, two- and three-soliton solutions are presented in the forms of modulus. Features of solitons are graphically discussed: (1) head-on and overtaking elastic collisions of the two solitons; (2) periodic attraction and repulsion of the bounded states of two solitons; (3) energy-exchanging collisions of the three solitons.  相似文献   

13.
This paper investigates a class of nonlinear elliptic equations on a fractal domain. We establish a strong Sobolev-type inequality which leads to the existence of multiple non-trivial solutions of △u+ c(x)u = f(x, u), with zero Dirichlet boundary conditions on the Sierpihski gasket. Our existence results do not require any growth conditions of f(x,t) in t, in contrast to the classical theory of elliptic equations on smooth domains.  相似文献   

14.
We consider the transmission system of coupling wave equations with Euler–Bernoulli equations on Riemannian manifolds. By introducing nonlinear boundary feedback controls, we establish the exponential and rational energy decay rate for the problem. Our proofs rely on the geometric multiplier method.  相似文献   

15.
16.
This paper is devoted to the study of the viscosity solutions of
l\mathbbF(D2u,u,x)+f=0\begin{array}{l}\mathbb{F}({\rm D}^{2}u,u,x)+f=0\end{array}  相似文献   

17.
In this article, an enhanced (G′/G)-expansion method is suggested to find the traveling wave solutions for the modified Korteweg de-Vries (mKDV) equation. Abundant traveling wave solutions are derived, which are expressed by the hyperbolic and trigonometric functions involving several parameters. The efficiency of this method for finding these exact solutions has been demonstrated. It is shown that the proposed method is effective and can be used for many other nonlinear evolution equations (NLEEs) in mathematical physics.  相似文献   

18.
We investigate the large-time behavior of the value functions of the optimal control problems on the n-dimensional torus which appear in the dynamic programming for the system whose states are governed by random changes. From the point of view of the study on partial differential equations, it is equivalent to consider viscosity solutions of quasi-monotone weakly coupled systems of Hamilton–Jacobi equations. The large-time behavior of viscosity solutions of this problem has been recently studied by the authors and Camilli, Ley, Loreti, and Nguyen for some special cases, independently, but the general cases remain widely open. We establish a convergence result to asymptotic solutions as time goes to infinity under rather general assumptions by using dynamical properties of value functions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号