首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用弧坐标首先建立了在动载荷作用下,具有不连续性条件和初始位移的框架结构大变形分析的非线性数学模型.其次, 在空间区域内, 采用微分求积单元法(DQEM)来离散非线性数学模型, 并提出了在使用DQEM来求解结构大变形分析中,多个变量具有间断性条件的有效方法,得到了一组非线性DQEM的离散化方程,它是时间域内的一组具有奇异性的非线性微分-代数方程.同时也给出了求解非线性微分-代数方程组的一个解法A·D2作为应用,求解了受集中力和分布力作用的框架和组合框架的大变形静动力学问题,并与现有结果进行了比较.数值算例表明,处理多个变量具有间断性条件的方法和求解代数-微分系统的方法是一个有效的和一般的方法,它具有较少的节点、 较小的计算工作量、 较高的精度、良好的收敛性、 操作简单以及应用广泛等优点.  相似文献   

2.
Purpose In this article, a novel computational method is introduced for solving the fractional nonlinear oscillator differential equations on the semi‐infinite domain. The purpose of the proposed method is to get better and more accurate results. Design/methodology/approach The proposed method is the combination of the sine‐cosine wavelets and Picard technique. The operational matrices of fractional‐order integration for sine‐cosine wavelets are derived and constructed. Picard technique is used to convert the fractional nonlinear oscillator equations into a sequence of discrete fractional linear differential equations. Operational matrices of sine‐cosine wavelets are utilized to transformed the obtained sequence of discrete equations into the systems of algebraic equations and the solutions of algebraic systems lead to the solution of fractional nonlinear oscillator equations. Findings The convergence and supporting analysis of the method are investigated. The operational matrices contains many zero entries, which lead to the high efficiency of the method, and reasonable accuracy is achieved even with less number of collocation points. Our results are in good agreement with exact solutions and more accurate as compared with homotopy perturbation method, variational iteration method, and Adomian decomposition method. Originality/value Many engineers can utilize the presented method for solving their nonlinear fractional models.  相似文献   

3.
The effects of pulsed electromagnetic fields on the dynamic mechanical response of electrically conductive anisotropic plates are studied. The analysis is based on the simultaneous solving of the system of nonlinear partial differential equations that include equations of motion and Maxwell’s equations. Physics-based hypotheses for electro-magneto-mechanical coupling in anisotropic composite plates and dimension reduction solution procedures for the nonlinear system of the governing equations are presented. A numerical solution procedure for the resulting two-dimensional nonlinear system of the governing equations has been developed and consists of the sequential application of time and spatial integration and quasilinearization. The developed methodology is applied to the problem of the dynamic response of a long current-carrying unidirectional carbon fiber polymer matrix composite plate subjected to transverse impact load and in-plane pulsed electromagnetic load. The interacting effects of the pulsed electric current, external magnetic field, and mechanical load are studied.  相似文献   

4.
基于复化Simpson公式和复化两点Gauss-Legendre公式,构造了两个求解时间分布阶扩散方程的高阶有限差分格式.不同于以往文献中提出的时间一阶或二阶格式,这两种格式在时间方向都具有三阶精度,而在分布阶和空间方向可达到四阶精度.数值结果表明,两种算法都是稳定且收敛的,从而是有效的.两种格式的收敛速率也通过数值实验进行了验证,并且通过和文献中的算法对比可以得出其更为高效,  相似文献   

5.
We present the theory of breaking waves in nonlinear systems whose dynamics and spatial structure are described by multidimensional nonlinear hyperbolic wave equations. We obtain a general relation between systems of first-order quasilinear equations and nonlinear hyperbolic equations of higher orders, which, in particular, describe electromagnetic waves in a medium with nonlinear polarization of an arbitrary form. We use this approach to construct exact multivalued solutions of such equations and to study their spatial structure and dynamics. The results are generalized to a wide class of multidimensional equations such as d’Alembert equations, nonlinear Klein-Gordon equations, and nonlinear telegraph equations.  相似文献   

6.
In this paper, we study the propagation of the pattern for a reaction-diffusionchemotaxis model. By using a weakly nonlinear analysis with multiple temporal and spatial scales, we establish the amplitude equations for the patterns, which show that a local perturbation at the constant steady state is spread over the whole domain in the form of a traveling wavefront. The simulations demonstrate that the amplitude equations capture the evolution of the exact patterns obtained by numerically solving the considered system.  相似文献   

7.
8.
The spread of a virus through the leaf of a plant is both spatially and temporally causal in that the present status depends on the past and the spatial spread is compactly supported and progresses outwards. Such spatial spread is known to occur for certain nonlinear diffusion processes. The first compactly supported solution for nonlinear diffusion equations appears to be that of Pattle published in 1959. In that paper, no explanation is given as to how the solution was derived. Here, we show how the solution can be derived using Lie symmetry analysis. This lays a foundation for exploring the behavior of other choices for nonlinear diffusion and exploring the addition of reaction terms which do not eliminate the compactly supported structure. The implications associated with using the reaction–diffusion equation to model the spatial–temporal spread of a virus through the leaf of a plant are discussed.  相似文献   

9.
This paper presents a new semi-analytic perturbation differential quadrature method for geometrically nonlinear vibration analysis of circular plates. The nonlinear governing equations are converted into a linear differential equation system by using Linstedt–Poincaré perturbation method. The solutions of nonlinear dynamic response and the nonlinear free vibration are then sought through the use of differential quadrature approximation in space domain and analytical series expansion in time domain. The present method is validated against analytical results using elliptic function in several examples for both clamped and simply supported circular plates, showing that it has excellent accuracy and convergence. Compared with numerical methods involving iterative time integration, the present method does not suffer from error accumulation and is able to give very accurate results over a long time interval.  相似文献   

10.
Nanofluid flow is one of the most important areas of research at the present time due to its wide and significant applications in industry and several scientific fields. The boundary layer flow of nanofluids is usually described by a system of nonlinear differential equations with boundary conditions at infinity. These boundary conditions at infinity cause difficulties for any of the series method, such as Adomian’s method, the variational iteration method and others.The objective of the present work is to introduce a reliable method to overcome such difficulties that arise due to an infinite domain. The proposed scheme, that we will introduce, is based on Adomian’s decomposition method, where we will solve a system of nonlinear differential equations describing the boundary layer flow of a nanofluid past a stretching sheet.  相似文献   

11.
In this work, we present an implicit compact difference scheme for solving a class of neutral delay parabolic differential equations (NDPDEs). The unique solvability and unconditional stability of the scheme are proved. The temporal accuracy of the scheme is improved by using different Richardson extrapolation techniques for linear and nonlinear problems, and fourth-order accuracy in both temporal and spatial dimensions is obtained. Finally, numerical experiments are conducted to verify the accuracy and efficiency of the algorithms.  相似文献   

12.
We are concerned with a system of nonlinear partial differential equations modeling the Lotka–Volterra interactions of predators and preys in the presence of prey-taxis and spatial diffusion. The spatial and temporal variations of the predator's velocity are determined by the prey gradient. We prove the existence of weak solutions by using Schauder fixed-point theorem and uniqueness via duality technique. The linearized stability around equilibrium is also studied. A finite volume scheme is build and numerical simulation show interesting phenomena of pattern formation.  相似文献   

13.
Establishment of a new approach for analyzing the nonlinear behavior of a cracked rotor system is the main goal of the present research. Nonlinear governing equations of motion are developed for the cracked rotor system with asymmetrical viscoelastic supports. In establishing the approach, the masses of the rotational shaft and a disc mounted on the shaft, geometric nonlinearity of the shaft, and the rotor’s extra displacements due to the existence of the crack are all taken into account. On the basis of the governing equations, the nonlinear behavior of the rotor system is analyzed numerically with considerations of the effects of the crack depth, the crack location, the locations of the disc, and the shaft’s rotational speed. The effects of the crack and the other system parameters on the dynamic stability of the rotor system are also investigated.  相似文献   

14.
As parallel architectures evolve the number of available cores continues to increase. Applications need to display a high degree of concurrency in order to effectively utilize the available resources. Large scale partial differential equations mainly rely on a spatial domain decomposition approach, where the number of parallel tasks is limited by the size of the spatial domain. Time parallelism offers a promising approach to increase the degree of concurrency. ‘Parareal’ is an iterative parallel in time algorithm that uses both low and high accuracy numerical solvers. Though the high accuracy solvers are computed in parallel, the low accuracy ones are in serial.This paper revisits the parallel in time algorithm [11] using a nonlinear optimization approach. Like in the traditional ‘Parareal’ method, the time interval is partitioned into subintervals, and local time integrations are carried out in parallel. The objective cost function quantifies the mismatch of local solutions between adjacent subintervals. The optimization problem is solved iteratively using gradient-based methods. All the computational steps – forward solutions, gradients, and Hessian-vector products – involve only ideally parallel computations and therefore are highly scalable.The feasibility of the proposed algorithm is studied on three different model problems, namely, heat equation, Arenstorf's orbit, and the Lorenz model.  相似文献   

15.
We present an approach to compute optimal control functions in dynamic models based on one-dimensional partial differential algebraic equations (PDAE). By using the method of lines, the PDAE is transformed into a large system of usually stiff ordinary differential algebraic equations and integrated by standard methods. The resulting nonlinear programming problem is solved by the sequential quadratic programming code NLPQL. Optimal control functions are approximated by piecewise constant, piecewise linear or bang-bang functions. Three different types of cost functions can be formulated. The underlying model structure is quite flexible. We allow break points for model changes, disjoint integration areas with respect to spatial variable, arbitrary boundary and transition conditions, coupled ordinary and algebraic differential equations, algebraic equations in time and space variables, and dynamic constraints for control and state variables. The PDAE is discretized by difference formulae, polynomial approximations with arbitrary degrees, and by special update formulae in case of hyperbolic equations. Two application problems are outlined in detail. We present a model for optimal control of transdermal diffusion of drugs, where the diffusion speed is controlled by an electric field, and a model for the optimal control of the input feed of an acetylene reactor given in form of a distributed parameter system.  相似文献   

16.
A nonlinear iteration method named the Picard-Newton iteration is studied for a two-dimensional nonlinear coupled parabolic-hyperbolic system. It serves as an efficient method to solve a nonlinear discrete scheme with second spatial and temporal accuracy. The nonlinear iteration scheme is constructed with a linearization-discretization approach through discretizing the linearized systems of the original nonlinear partial differential equations. It can be viewed as an improved Picard iteration, and can accelerate convergence over the standard Picard iteration. Moreover, the discretization with second-order accuracy in both spatial and temporal variants is introduced to get the Picard-Newton iteration scheme. By using the energy estimate and inductive hypothesis reasoning, the difficulties arising from the nonlinearity and the coupling of different equation types are overcome. It follows that the rigorous theoretical analysis on the approximation of the solution of the Picard-Newton iteration scheme to the solution of the original continuous problem is obtained, which is different from the traditional error estimate that usually estimates the error between the solution of the nonlinear discrete scheme and the solution of the original problem. Moreover, such approximation is independent of the iteration number. Numerical experiments verify the theoretical result, and show that the Picard-Newton iteration scheme with second-order spatial and temporal accuracy is more accurate and efficient than that of first-order temporal accuracy.  相似文献   

17.
Exact solutions of sine Gordon and multiple sine Gordon equations are constructed in terms of solutions of a linear base equation, the Klein Gordon equation and also in terms of nonlinear base equations where the nonlinearity is polynomial in the dependent variable. Further, exact solutions of nonlinear generalizations of the Schrodinger equation and of additional nonlinear generalizations of the Klein Gordon equation are constructed in terms of solutions of linear base equations. Finally, solutions with spherical symmetry, of nonlinear Klein Gordon equations are given.  相似文献   

18.
Coarse grid projection (CGP) methodology is a novel multigrid method for systems involving decoupled nonlinear evolution equations and linear elliptic Poisson equations. The nonlinear equations are solved on a fine grid and the linear equations are solved on a corresponding coarsened grid. Mapping operators execute data transfer between the grids. The CGP framework is constructed upon spatial and temporal discretization schemes. This framework has been established for finite volume/difference discretizations as well as explicit time integration methods. In this article we present for the first time a version of CGP for finite element discretizations, which uses a semi-implicit time integration scheme. The mapping functions correspond to the finite-element shape functions. With the novel data structure introduced, the mapping computational cost becomes insignificant. We apply CGP to pressure-correction schemes used for the incompressible Navier-Stokes flow computations. This version is validated on standard test cases with realistic boundary conditions using unstructured triangular meshes. We also pioneer investigations of the effects of CGP on the accuracy of the pressure field. It is found that although CGP reduces the pressure field accuracy, it preserves the accuracy of the pressure gradient and thus the velocity field, while achieving speedup factors ranging from approximately 2 to 30. The minimum speedup occurs for velocity Dirichlet boundary conditions, while the maximum speedup occurs for open boundary conditions.  相似文献   

19.
We deal with the time-dependent Navier–Stokes equations (NSE) with Dirichlet boundary conditions on the whole domain or, on a part of the domain and open boundary conditions on the other part. It is shown numerically that combining the penalty-projection method with spatial discretization by the Marker And Cell scheme (MAC) yields reasonably good results for solving the above-mentioned problem. The scheme which has been introduced combines the backward difference formula of second-order (BDF2, namely Gear’s scheme) for the temporal approximation, the second-order Richardson extrapolation for the nonlinear term, and the penalty-projection to split the velocity and pressure unknowns. Similarly to the results obtained for other projection methods, we estimate the errors for the velocity and pressure in adequate norms via the energy method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号