首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper addresses the free vibration problem of multilayered shells with embedded piezoelectric layers. Based on the three-dimensional theory of elasticity, an approach combining the state space method and the differential quadrature method (DQM) is used. The shell has arbitrary end boundary conditions. For the simply supported boundary conditions closed-form solution is given by making the use of Fourier series expansion. Applying the differential quadrature method to the state space formulations along the axial direction, new state equations about state variables at discrete points are obtained for the other cases such as clamped or free end conditions. Natural frequencies of the hybrid laminated shell are presented by solving the eigenfrequency equation which can be obtained by using edges boundary condition in this state equation. Accuracy and convergence of the present approach is verified by comparing the natural frequencies with the results obtained in the literatures. Finally, the effect of edges conditions, mid-radius to thickness ratio, length to mid-radius ratio and the piezoelectric thickness on vibration behaviour of shell are investigated.  相似文献   

2.
An accurate free vibration analysis of skew plates is presented by using the new version of the differential quadrature method (DQM). Eight combinations of simply supported (S), clamped (C) and free (F) boundary conditions are considered. Detailed solution procedures are given and key points for success by using the DQM are emphasized. A way to simplifying the programming in using the DQM is proposed. Convergence study is made for the simply supported skew plate with a large skew angle. Good convergence of frequencies is observed. The DQ results agree very well with the existing first known accurate upper bound solutions, obtained by using Ritz method taking into considerations of the bending stress singularities occurred at corners having obtuse angles. Since slight discrepancy between the DQ data and the known accurate solutions is observed for plates with large skew angles, the DQ results are also compared with data obtained by using finite element method with very fine meshes to verify their accuracy.  相似文献   

3.
It is of significance to explore benchmark analytic free vibration solutions of rectangular thick plates without two parallel simply supported edges, because the classic analytic methods are usually invalid for the problems of this category. The main challenge is to find the solutions meeting both the governing higher order partial differential equations (PDEs) and boundary conditions of the plates, i.e., to analytically solve associated complex boundary value problems of PDEs. In this letter, we extend a novel symplectic superposition method to the free vibration problems of clamped rectangular thick plates, with the analytic frequency solutions obtained by a brief set of equations. It is found that the analytic solutions of clamped plates can simply reduce to their variants with any combinations of clamped and simply supported edges via an easy relaxation of boundary conditions. The new results yielded in this letter are not only useful for rapid design of thick plate structures but also provide reliable benchmarks for checking the validity of other new solution methods.  相似文献   

4.
In this paper, exact closed-form solutions in explicit forms are presented for transverse vibration analysis of rectangular thick plates having two opposite edges hard simply supported (i.e., Lévy-type rectangular plates) based on the Reddy’s third-order shear deformation plate theory. Two other edges may be restrained by different combinations of free, soft simply supported, hard simply supported or clamped boundary conditions. Hamilton’s principle is used to derive the equations of motion and natural boundary conditions of the plate. Several comparison studies with analytical and numerical techniques reported in literature are carried out to demonstrate accuracy of the present new formulation. Comprehensive benchmark results for natural frequencies of rectangular plates with different combinations of boundary conditions are tabulated in dimensionless form for various values of aspect ratios and thickness to length ratios. A set of three-dimensional (3-D) vibration mode shapes along with their corresponding contour plots are plotted by using exact transverse displacements of Lévy-type rectangular Reddy plates. Due to the inherent features of the present exact closed-form solution, the present findings will be a useful benchmark for evaluating the accuracy of other analytical and numerical methods, which will be developed by researchers in the future.  相似文献   

5.
Reissner厚板弹性弯曲的一般解析解   总被引:6,自引:2,他引:4  
针对大型工程建设中的Reisner厚板弹性弯曲问题,本文采用复级数方法求解相应的常系数偏微分方程组的边值问题,并首次得到了任意边界条件下的一般解析解.该解形式简单,计算方便、可靠.以四边简支和三边固支一边自由两种支撑条件下厚板承受均布载荷为例进行了分析验算,与已有的计算结果相比,计算结果相当满意.同时本文还着重对解的收敛速度、正确性(合理性)及边界满足情况进行了考察.  相似文献   

6.
This paper investigates the nonlinear vibration and instability of the embedded double-walled boron nitride nanotubes (DWBNNTs) conveying viscous fluid based on nonlocal piezoelasticity cylindrical shell theory. The elastic medium is simulated as Winkler–Pasternak foundation, and adjacent layers interactions are assumed to have been coupled by van der Walls (vdW) force evaluated based on the Lennard–Jones model. The nonlinear strain terms based on Donnell’s theory are taken into account. The Hamilton’s principle is employed to obtain coupled differential equations, containing displacement and electric potential terms. Differential quadrature method (DQM) is applied to estimate the nonlinear frequency and critical fluid velocity for clamped supported mechanical and free electric potential boundary conditions at both ends of the DWBNNTs. Results indicated that some parameters including nonlocal parameter, elastic medium’s modulus, aspect ratio and vdW force have significant influence on the vibration and instability of the DWBNNT while the fluid viscosity effect is negligible. In addition, the low aspect ratio should be taken into account for DWBNNT in optimum design of nano/micro devices.  相似文献   

7.
This study analyses the free vibrations of circular thin plates for simply supported, clamped and free boundary conditions. The solution method used is differential transform method (DTM), which is a semi-numerical-analytical solution technique that can be applied to various types of differential equations. By using DTM, the governing differential equations are reduced to recurrence relations and its related boundary/regularity conditions are transformed into a set of algebraic equations. The frequency equations are obtained for the possible combinations of the outer edge boundary conditions and the regularity conditions at the center of the circular plate. Numerical results for the dimensionless natural frequencies are presented and then compared to the Bessel function solution and the numerical solutions that appear in literature. It is observed that DTM is a robust and powerful tool for eigenvalue analysis of circular thin plates.  相似文献   

8.
As a first endeavor, a mixed differential quadrature (DQ) and finite element (FE) method for boundary value structural problems in the context of free vibration and buckling analysis of thick beams supported on two-parameter elastic foundations is presented. The formulations are based on the two-dimensional theory of elasticity. The problem domain along axial direction is discretized using finite elements. The resulting system of equations and the related boundary conditions are discretized in the thickness direction and in strong-form using DQM. The method benefits from low computational efforts of the DQ in conjunction with the effectiveness of the FE method in general geometry and systematic boundary treatment resulting in highly accurate and fast convergence behavior solution. The boundary conditions at the top and bottom surface of the beams are implemented accurately. The presented formulations provide an effective analysis tool for beams free of shear locking. Comparisons are made with results from elasticity solutions as well as higher-order beam theory.  相似文献   

9.
This study analyzes the nonlinear free vibration and post-buckling of nanobeams with flexoelectric effect based on Eringen's differential model. The nanobeam is modeled based on Timoshenko beam's theory. The von-Kármán strain–displacement relation together with the electrical Gibbs free energy and Hamilton's principle are employed to derive equations of motion. The nonlinear free vibration frequencies are obtained for pinned–pinned (P–P) and clamped–clamped (C–C) boundary conditions. Multiple scales method is employed to obtain the closed-form solution for the nonlinear governing equations. By employing this methodology, the natural frequencies of nanobeams are obtained and their post-buckling behavior is examined. The influence of nonlocal parameter, amplitude ratio, and input voltage on the top surface and flexoelectricity constant on nonlinear free vibration and post-buckling characteristics of nanobeam is investigated. In this paper, it is concluded that the flexoelectricity has a significant effect on free vibration of the beams in nano-scale and its effect has to be considered in designing nano-electro-mechanical systems (NEMS) such as nano- generators and nano-sensors.  相似文献   

10.
基于von Krmn薄板理论,讨论了滑动固定基础上周边面内压力作用下夹层圆板的非线性振动问题,应用变分法导出了该问题的非线性特征方程和边界条件,给出了其精确静态解,并使用修正迭代法求解了该方程,导出了夹层圆板振幅和非线性振频的解析关系式.当周边面力使夹层圆板的最低固有频率为零时,就可获得临界载荷的值.  相似文献   

11.
The present study is concerned with the free vibration analysis of a horizontal rectangular plate, either immersed in fluid or floating on its free surface. The governing equations for a moderately thick rectangular plate are analytically derived based on the Mindlin plate theory (MPT), whereas the velocity potential function and Bernoulli’s equation are employed to obtain the fluid pressure applied on the free surface of the plate. The simplifying hypothesis that the wet and dry mode shapes are the same, is not assumed in this paper. In this work, an exact-closed form characteristics equation is used for the plate subjected to a combination of six different boundary conditions. Two opposite sides are simply supported and any of the other two edges can be free, simply supported or clamped. To demonstrate the accuracy of the present analytical solution, a comparison is made with the published experimental and numerical results in the literature, showing an excellent agreement. Then, natural frequencies of the plate are presented in tabular and graphical forms for different fluid levels, fluid densities, aspect ratios, thickness to length ratios and boundary conditions. Finally, some 3-D mode shapes of the rectangular Mindlin plates in contact with fluid are illustrated.  相似文献   

12.
基于偶应力理论,建立了适用于微纳米结构的Mindlin板理论。考虑横向剪切变形和材料的尺度效应并引入长度尺寸参数,推导了各向同性微纳米Mindlin板的本构方程。根据板的平衡条件,进一步推导出用位移函数和转角函数表示的板的屈曲和振动控制方程。通过对位移和转角变量进行空间和时间域上的分离,得出了四边简支(SSSS)和对边简支、对边固支(SCSC)两种边界情况下微纳米板的屈曲和振动问题的解析解。然后利用MATLAB软件进行算例分析,获得了不同尺寸参数、长宽比、厚长比等情况下板的临界屈曲荷载和固有频率。研究结果与已有文献中的结果以及ABAQUS有限元仿真解进行对比,结果表明,不同参数下的三种方法得到的结果均十分接近。算例分析发现,尺度效应对屈曲载荷和固有频率都有显著影响。  相似文献   

13.
14.
Studies are made on nonlinear free vibrations of simply supported piezo-laminated rectangular plates with immovable edges utilizing Kirchoff’s hypothesis and von Kármán strain–displacement relations. The effect of random material properties of the base structure and actuation electric potential difference on the nonlinear free vibration of the plate is examined. The study is confined to linear-induced strain in the piezoelectric layer applicable to low electric fields. The von Kármán’s large deflection equations for generally laminated elastic plates are derived in terms of stress function and transverse deflection function. A deflection function satisfying the simply supported boundary conditions is assumed and a stress function is then obtained after solving the compatibility equation. Applying the modified Galerkin’s method to the governing nonlinear partial differential equations, a modal equation of Duffing’s type is obtained. It is solved by exact integration. Monte Carlo simulation has been carried out to examine the response statistics considering the material properties and actuation electric potential difference of the piezoelectric layer as random variables. The extremal values of response are also evaluated utilizing the Convex model as well as the Multivariate method. Results obtained through the different statistical approaches are found to be in good agreement with each other.  相似文献   

15.
Buckling mode localization in rib-stiffened plates with randomly misplaced stiffeners is studied in this paper. The method of Kantorovich on reducing a partial differential equation to a system of ordinary differential equations is employed to obtain the deflection surface of the rib-stiffened plates under axial compressive load. The edges of the plates normal to the stiffeners can be either simply supported or clamped. The solutions of the deflection surface are then expressed in the form of transfer matrices. The expressions of the solutions obtained for the case of one edge simply supported and one edge clamped and the case of two edges clamped are similar to those for the case of two edges simply supported. When the two edges are simply supported, the method of Kantorovich yields the exact results. Localization factors, which characterize the average exponential rates of growth or decay of amplitudes of deflection, are determined using the method of transfer matrix. The method of Kantorovich is a general approximate method, which is applicable for various support conditions.  相似文献   

16.
约束层阻尼圆柱壳的自由振动   总被引:2,自引:0,他引:2       下载免费PDF全文
给出了被动约束层阻尼圆柱壳(PCLD)的自由振动特性.波传播法被用来求解两端简支的PCLD圆柱壳的振动,而不是用有限元法、传递矩阵法和Rayleigh-Ritz法.基于Sanders薄壳理论,导出了PCLD正交各向异性圆柱壳的控制方程.数值结果表明当前的方法要比目前其它方法有效.讨论了粘弹性层和约束层的厚度,正交各向异性约束层的弹性模量比率和粘弹性层的复剪切模量对频率参数和损失因子的影响.  相似文献   

17.
扇形板的富里哀—贝塞尔级数解   总被引:4,自引:0,他引:4  
本文以加补充项的富里哀—贝塞尔双重级数的位移模式,对扇形弹性薄板在各种边界件条下的弯曲和振动问题,提出了一种应用范围比较广的、便于计算的、解析形式的解法.作为算例,文中给出了各种角度的径向边界简支或固定的扇形板在均布荷载或集中荷载作用下产生的挠度和弯矩的分布曲线,并与有关文献的数值结果进行了比较.本文推广了加补充项的富氏级数法的应用范围,并计算出各种角度的径向边界简支的扇形板的自振频率和节线的图表.  相似文献   

18.
用广义简支边概念和叠加法给出的均布载荷下两邻边固定、一边简支、一边自由矩形板的精确解。对正方形自由的挠度和回定边的弯矩进行了数学计算。  相似文献   

19.
研究了一端固支另一端简支连续变厚度梁在静力荷载作用下的应力和位移分布.通过引入单位脉冲函数和Dirae函数,将固支边等效为简支边与未知水平反力的叠加,利用平面应力问题的基本方程,导出满足控制微分方程及左右两端边界条件的位移函数的一般解,对上下表面的边界方程作Fourier级数展开,结合固支边位移为O的条件确定待定系数,得到的解是高精度的.数值结果与商业有限元软件ANSYS进行了比较,显示出很好的精度.  相似文献   

20.
The main objective of this study is to predict both the subharmonic and superharmonic resonances of the nonlinear oscillation of nanobeams in the presence of surface free energy effects. To this purpose, Gurtin–Murdoch elasticity theory is adopted to the classical beam theory in order to consider the surface Lame constants, surface mass density, and residual surface stress within the differential equations of motion. The Galerkin method together with the method of multiple scales is utilized to investigate the size-dependent response of nanobeams under hard excitations corresponding to various boundary conditions. A parametric analysis is carried out to indicate the influence of the surface elastic parameters on the frequency-response as well as amplitude-response of the nonlinear secondary resonance including multiple vibration modes and interactions between them. It is seen that for the superharmonic excitation, except for the clamped–free boundary condition, the jump phenomenon is along the hardening direction, while in the clamped–free end supports, it is along the softening direction. Moreover, it is revealed that for the subharmonic excitation, within a specific range of the excitation amplitude, the nanobeam is excited, and this range shifts to lower external force by incorporating the surface free energy effects. It is found that in the case of superharmonic excitation, the value of the excitation frequency associated with the bifurcation point at the peak of the frequency-response curve increases by taking the surface free energy effect into consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号