首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new approach to adaptive control of chaos in a class of nonlinear discrete-time-varying systems, using a delayed state feedback scheme, is presented. It is discussed that such systems can show chaotic behavior as their parameters change. A strategy is employed for on-line calculation of the Lyapunov exponents that will be used within an adaptive scheme that decides on the control effort to suppress the chaotic behavior once detected. The scheme is further augmented with a nonlinear observer for estimation of the states that are required by the controller but are hard to measure. Simulation results for chaotic control problem of Jin map are provided to show the effectiveness of the proposed scheme.  相似文献   

2.
In this paper, a four-dimensional (4D) continuous autonomous hyperchaotic system is introduced and analyzed. This hyperchaotic system is constructed by adding a linear controller to the 3D autonomous chaotic system with a reverse butterfly-shape attractor. Some of its basic dynamical properties, such as Lyapunov exponents, Poincare section, bifurcation diagram and the periodic orbits evolving into chaotic, hyperchaotic dynamical behavior by varying parameter d are studied. Furthermore, the full state hybrid projective synchronization (FSHPS) of new hyperchaotic system with unknown parameters including the unknown coefficients of nonlinear terms is studied by using adaptive control. Numerical simulations are presented to show the effective of the proposed chaos synchronization scheme.  相似文献   

3.
This work presents chaos synchronization between two different chaotic systems via nonlinear feedback control. On the basis of a converse Lyapunov theorem and balanced gain scheme, control gains of controller are derived to achieve chaos synchronization for the unified chaotic systems. Numerical simulations are shown to verify the results.  相似文献   

4.
This paper deals with the finite-time chaos synchronization of the unified chaotic system with uncertain parameters. Based on the finite-time stability theory, a control law is proposed to realize finite-time chaos synchronization for the unified chaotic system with uncertain parameters. The controller is simple, robust and only part parameters are required to be bounded. Simulation results for the Lorenz, Lü and Chen chaotic systems are presented to validate the design and the analysis.  相似文献   

5.
This paper investigates the chaos control problem for a general class of chaotic systems. A feedback controller is established to guarantee asymptotical stability of the chaotic systems based on the sliding mode control theory. A new reaching law is introduced to solve the chattering problem that is produced by traditional sliding mode control. A dynamic compensator is designed to improve the performance of the closed-loop system in sliding mode, and its parameter is obtained from a linear matrix inequality (LMI). Simulation results for the well known Chua’s circuit and Lorenz chaotic system are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

6.
The minimum entropy (ME) control is a chaos control technique which causes chaotic behavior to vanish by stabilizing unstable periodic orbits of the system without using mathematical model of the system. In this technique some controller type, normally delayed feedback controller, with an adjustable parameter such as feedback gain is used. The adjustable parameter is determined such that the entropy of the system is minimized. Proposed in this paper is the PSO-based multi-variable ME control. In this technique two or more control parameters are adjusted concurrently either in a single or in multiple control inputs. Thus it is possible to use two or more feedback terms in the delayed feedback controller and adjust their gains. Also the multi-variable ME control can be used in multi-input systems. The minimizing engine in this technique is the particle swarm optimizer. Using online PSO, the PSO-based multi-variable ME control technique is applied to stabilize the 1-cycle fixed points of the Logistic map, the Hénon map, and the chaotic Duffing system. The results exhibit good effectiveness and performance of this controller.  相似文献   

7.
Synchronization of chaos presents many challenges for controller design. The novel notion of exerting concurrent control in the joint time-frequency domain is applied to formulate a chaos synchronization scheme that requires no linearization or heuristic trial-and-errors for nonlinear controller design. The concept is conceived through recognizing the basic attributes inherent of all chaotic systems, including the simultaneous deterioration of dynamics in both the time and frequency domains when bifurcates, nonstationarity, and sensitivity to initial conditions. Having its philosophical bases established in simultaneous time-frequency control, on-line system identification, and adaptive control, the chaos synchronization scheme incorporates multiresolution analysis, adaptive filters, and filtered-x Least Mean Square algorithm as its physical features. Without A priori knowledge of the driven system parameters, synchronization is invariably achieved regardless of the initial and forcing conditions the response system is subjected to. In addition, driving and driven trajectories are seen robustly synchronized with negligible errors in spite of the infliction of high frequency noise.  相似文献   

8.
Synchronization of Genesio chaotic system via backstepping approach   总被引:9,自引:0,他引:9  
Backstepping design is proposed for synchronization of Genesio chaotic system. Firstly, the control problem for the chaos synchronization of nominal Genesio systems without unknown parameters is considered. Next, an adaptive backstepping control law is derived to make the error signals between drive Genesio system and response Genesio system with an uncertain parameter asymptotically synchronized. Finally, the approach is extended to the synchronization problem for the system with three unknown parameters. The stability analysis in this article is proved by using a well-known Lyapunov stability theorem. Note that the approach provided here needs only a single controller to realize the synchronization. Two numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.  相似文献   

9.
This paper investigates the synchronization of three dimensional chaotic systems by extending our previous method for chaos stabilization, and proposes a novel simple adaptive feedback controller for chaos synchronization. In comparison with previous methods, the present controller contains single state feedback. To our knowledge, the above controller is the simplest control scheme for synchronizing the three dimensional chaotic systems. The results are validated using numerical simulations.  相似文献   

10.
In this paper, a simple method is proposed for chaos control for a class of discrete-time chaotic systems. The proposed method is built upon the state feedback control and the characteristic of ergodicity of chaos. The feedback gain matrix of the controller is designed using a simple criterion, so that control parameters can be selected via the pole placement technique of linear control theory. The new controller has a feature that it only uses the state variable for control and does not require the target equilibrium point in the feedback path. Moreover, the proposed control method cannot only overcome the so-called “odd eigenvalues number limitation” of delayed feedback control, but also control the chaotic systems to the specified equilibrium points. The effectiveness of the proposed method is demonstrated by a two-dimensional discrete-time chaotic system.  相似文献   

11.
This article deals with the fractional‐order modeling of a complex four‐dimensional energy supply‐demand system (FOESDS). First, the fractional calculus techniques are adopted to describe the dynamics of the energy supply‐demand system. Then the complex behavior of the proposed fractional‐order FOESDS is studied using numerical simulations. It is shown that the FOESDS can exhibit stable, chaotic, and unstable states. When it exhibits chaos, the FOESDS's strange attractors are plotted to validate the chaotic behavior of the system. Moreover, we calculate the maximal Lyapunov exponents of the system to confirm the existence of chaos. Accordingly, to stabilize the system, a finite‐time active fractional‐order controller is proposed. The effects of model uncertainties and external disturbances are also taken into account. An estimation of the stabilization time is given. Based on the latest version of the fractional Lyapunov stability theory, the finite‐time stability and robustness of the proposed method are proved. Finally, two illustrative examples are provided to illustrate the usefulness and applicability of the proposed control scheme. © 2014 Wiley Periodicals, Inc. Complexity 20: 74–86, 2015  相似文献   

12.
The unified chaotic system incorporates the behaviors of the Lorenz, the Chen and the Lü chaotic systems. This paper deals with the synchronization of two identical unified chaotic systems where the slave system is assumed to have a single input. A sliding mode controller is proposed to synchronize the two systems. The asymptotic convergence to zero of the errors between the states of the master and the slave systems is shown. Simulations results are presented to illustrate the proposed controller; they indicate that the designed controller is able to synchronize the unified chaotic systems. Also, simulation results show that the proposed control scheme is robust to random bounded disturbances acting on the master system. Moreover, the proposed scheme is applied to the secure communications field, where simulation results indicate that the proposed scheme is effective.  相似文献   

13.
Chaos and chaos synchronization of the centrifugal flywheel governor system are studied in this paper. By mechanics analyzing, the dynamical equation of the centrifugal flywheel governor system is established. Because of the non-linear terms of the system, the system exhibits both regular and chaotic motions. The characteristic of chaotic attractors of the system is presented by the phase portraits and power spectra. The evolution from Hopf bifurcation to chaos is shown by the bifurcation diagrams and a series of Poincaré sections under different sets of system parameters, and the bifurcation diagrams are verified by the related Lyapunov exponent spectra. This letter addresses control for the chaos synchronization of feedback control laws in two coupled non-autonomous chaotic systems with three different coupling terms, which is demonstrated and verified by Lyapunov exponent spectra and phase portraits. Finally, numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.  相似文献   

14.
Minimum entropy control technique, an approach for controlling chaos without using the dynamical model of the system, can be improved by being combined with a nature-based optimization technique. In this paper, an ACO-based optimization algorithm is employed to minimize the entropy function of the chaotic system. The feedback gain of a delayed feedback controller is adjusted in the ACO algorithm. The effectiveness of the idea is investigated on suppressing chaos in the tapping-mode atomic force microscope equations. Results show a good performance. The PSO-based version of the minimum entropy control technique is also used to control the chaotic behavior of the AFM, and corresponding results are compared showing almost a same functionality for the two optimization algorithms of PSO and ACO as the minimizing engines of the minimum entropy strategy.  相似文献   

15.
This work presents an adaptive sliding mode control scheme to elucidate the robust chaos suppression control of non-autonomous chaotic systems. The proposed control scheme utilizes extended systems to ensure that continuous control input is obtained in order to avoid chattering phenomenon as frequently in conventional sliding mode control systems. A switching surface is adopted to ensure the relative ease in stabilizing the extended error dynamics in the sliding mode. An adaptive sliding mode controller (ASMC) is then derived to guarantee the occurrence of the sliding motion, even when the chaotic horizontal platform system (HPS) is undergoing parametric uncertainties. Based on Lyapunov stability theorem, control laws are derived. In addition to guaranteeing that uncertain horizontal platform chaotic systems can be stabilized to a steady state, the proposed control scheme ensures asymptotically tracking of any desired trajectory. Furthermore, the numerical simulations verify the accuracy of the proposed control scheme, which is applicable to another chaotic system based on the same design scheme.  相似文献   

16.
The chaotic behavior of a double-well Duffing oscillator with both delayed displacement and velocity feedbacks under a harmonic excitation is investigated. By means of the Melnikov technique, necessary condition for onset of chaos resulting from homoclinic bifurcation is derived analytically. The analytical results reveal that for negative feedback the presence of time delay lowers the threshold and enlarges the possible chaotic domain in parameter space; while for positive feedback the presence of time delay enhances the threshold and reduces the possible chaotic domain in parameter space, which are further verified numerically through Poincare maps of the original system. Furthermore, the effect of the control gain parameters on the chaotic motion of the original system is studied in detail.  相似文献   

17.
The space-clamped FitzHugh–Nagumo (SCFHN) neuron exhibits complex chaotic firing when the amplitude of the external current falls into a certain area. To control the undesirable chaos in SCFHN neuron, a passive control law is presented in this paper, which transforms the chaotic SCFHN neuron into an equivalent passive system. It is proved that the equivalent system can be asymptotically stabilized at any desired fixed state, namely, chaos in SCFHN neuron can be controlled. Moreover, to eliminate the influence of undeterministic parameters, an adaptive law is introduced into the designed controller. Computer simulation results show that the proposed controller is very effective and robust against the uncertainty in systemic parameters.  相似文献   

18.
This paper deals with the problem of control and synchronization of coupled second-order oscillators showing a chaotic behavior. A classical feedback controller is first used to stabilize the system at its equilibrium. An adaptive observer is then designed to synchronize the states of the master and slave oscillators using a single scalar signal corresponding to an observable state variable of the driving oscillator. An interesting feature of the proposed approach is that it can be used for chaos control as well as synchronization purposes. Numerical simulations results confirming the analytical predictions are shown and pspice simulations are also performed to confirm the efficiency of the proposed control scheme.  相似文献   

19.
In this paper a nonlinear delayed feedback control is proposed to control chaos in an Atomic Force Microscope (AFM) system. The chaotic behavior of the system is suppressed by stabilizing one of its first-order Unstable Periodic Orbits (UPOs). At first, it is assumed that the system parameters are known, and a nonlinear delayed feedback control is designed to stabilize the UPO of the system. Then, in the presence of model parameter uncertainties, the proposed delayed feedback control law is modified via sliding mode scheme. The effectiveness of the presented methods is numerically investigated by stabilizing the unstable first-order periodic orbit of the AFM system. Simulation results show the high performance of the methods for chaos elimination in AFM systems.  相似文献   

20.
In this paper, a new hyperchaotic system is presented by adding a nonlinear controller to the three-dimensional autonomous chaotic system. The generated hyperchaotic system undergoes hyperchaos, chaos, and some different periodic orbits with control parameters changed. The complex dynamic behaviors are verified by means of Lyapunov exponent spectrum, bifurcation analysis, phase portraits and circuit realization. The Multisim results of the hyperchaotic circuit were well agreed with the simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号