首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nielsen AT  Jonsson S 《The Analyst》2002,127(8):1045-1049
A method was developed for the simultaneous determination of the following nine volatile sulfur compounds in gas samples: carbon disulfide, carbonyl sulfide, ethyl sulfide, ethyl methyl sulfide, hydrogen sulfide, isopropanethiol, methanethiol, methyl disulfide and methyl sulfide. The target compounds were preconcentrated by solid-phase microextraction (SPME) and determined by gas chromatography combined with mass spectrometry. Experimental design was employed to optimize the extraction time and temperature and concurrent detection of the nine compounds was achieved by using an SPME fiber coated with Carboxen-polydimethylsiloxane (75 microns). Detection limits ranged from 1 ppt (v/v) for carbon disulfide to 350 ppt (v/v) for hydrogen sulfide and calibration functions were linear up to 20 ppb (v/v) for all the compounds investigated.  相似文献   

2.
Amin D  Al-Allaf TA 《Talanta》1987,34(10):885-886
A sensitive, rapid and accurate titrimetric method has been developed for the determination of 50-5000 mug of ethyl-lead or phenyl-lead compounds, based on their oxidation with a chloroform solution of iodine, removal of the excess of iodine, oxidation of the resulting iodide with bromine, and iodometric titration of the iodate formed. The coefficient of variation does not exceed 1.2% for amounts > 1000 mug of the organolead compound, but increases to 2.8% for the 50-mug level. The ethyl- and phenyl-lead compounds can be determined independently in mixtures.  相似文献   

3.
A novel ultrasound-assisted surfactant-enhanced emulsification microextraction (UASEME) coupled with high performance liquid chromatography-diode array detection has been developed for the extraction and determination of six carbamate pesticides (metolcarb, carbofuran, carbaryl, pirimicarb, isoprocarb and diethofencarb) in water samples. In the UASEME technique, Tween 20 was used as emulsifier, and chlorobenzene and chloroform were used as dual extraction solvent without using any organic dispersive solvent that is normally required in the previously described common dispersive liquid–liquid microextraction method. Parameters that affect the extraction efficiency, such as the kind and volume of the extraction solvent, the type and concentration of the surfactant, ultrasound emulsification time and salt addition, were investigated and optimized for the method. Under the optimum conditions, the enrichment factors were in the range between 170 and 246. The limits of detection of the method were 0.1–0.3 ng mL−1 and the limits of quantification were between 0.3 and 0.9 ng mL−1, depending on the compounds. The linearity of the method was obtained in the range of 0.3–200 ng mL−1 for metolcarb, carbaryl, pirimicarb, and diethofencarb, 0.6–200 ng mL−1 for carbofuran, and 0.9–200 ng mL−1 for isoprocarb, with the correlation coefficients (r) ranging from 0.9982 to 0.9998. The relative standard deviations varied from 3.2 to 4.8% (n = 5). The recoveries of the method for the six carbamates from water samples at spiking levels of 1.0, 10.0, 50.0 and 100.0 ng mL−1 were ranged from 81.0 to 97.5%. The proposed UASEME technique has demonstrated to be simple, practical and environmentally friendly for the determination of carbamates residues in river, reservoir and well water samples.  相似文献   

4.
Ultrasound-assisted emulsification microextraction and dispersive liquid-liquid microextraction were compared for extraction of ephedrine, norephedrine, and pseudoephedrine from human urine samples prior to their determination by capillary electrophoresis. Formation of a microemulsion of the organic extract with an aqueous solution (at pH 3.2) containing 10% methanol facilitated the direct injection of the final extract into the capillary. Influential parameters affecting extraction efficiency were systematically studied and optimized. In order to enhance the sensitivity further, field-amplified sample injection was applied. Under optimum extraction and stacking conditions, enrichment factors of up to 140 and 1750 as compared to conventional capillary zone electrophoresis were obtained resulting in limits of detection of 12-33 μg/L and 1.0-2.8 μg/L with dispersive liquid-liquid microextraction and ultrasound-assisted emulsification microextraction when combined with field-amplified sample injection. Calibration graphs showed good linearity for urine samples by both methods with coefficients of determination higher than 0.9973 and percent relative standard deviations of the analyses in the range of 3.4-8.2% for (n = 5). The results showed that the use of ultrasound to assist microextraction provided higher extraction efficiencies than disperser solvents, regarding the hydrophilic nature of the investigated analytes.  相似文献   

5.
In this work, ultrasound-assisted emulsification microextraction in combination with fibre optics-based cuvetteless UV-vis micro-spectrophotometry has been proposed as a novel method for the determination of formaldehyde in water-based cosmetics such as shampoo, conditioner and shower gel. The use of a powerful cup-horn sonoreactor allows simultaneous extraction and derivatization of the samples without any pre-treatment. The type and volume of organic extractant solvent, need for a disperser solvent, sonication conditions (sonication time and amplitude), ionic strength and centrifuging time have been carefully studied. Matrix effects were also evaluated. The European official method for quantification of formaldehyde in cosmetic products was used for comparison purposes. An important improvement in sensitivity and sample throughput as well as miniaturization was achieved. A limit of detection of 0.02 μg g−1 of formaldehyde and a repeatability expressed as relative standard deviation of 5.9% were obtained.  相似文献   

6.
We have developed a simple and efficient method for dispersive liquid-liquid microextraction of 4-nitrophenol, 2-naphthol and bisphenol A in real water samples. It is making use of solidified floating organic droplets of 1-dodecanol which has low density and a proper melting point. The type and volume of extraction solvent and dispersive solvent, the effect of salts, pH value and extraction time were optimized and resulted in enrichment factors of 84 for 4-nitrophenol, 123 for 2-naphthol, and 97 for bisphenol A. The limits of detection by HPLC are 1.50, 0.10 and 1.02 ng · mL?1, respectively. Excellent linearity is observed in the concentration range from 10 to 800 ng · mL?1, with coefficients of correlation ranging from 0.9988 to 0.9999. The relative standard deviations (for n?=?5) are from 3.2 to 5.3 %, and relative recoveries for the three phenols in tap, river and spring water range from 85.0 to 105.0 %, 98.3 to 110.0 %, and 98.6 to 109.0 %, respectively.
Figure
Chromatograms of river water blank (b) and spiked river water (a, 500 ng ? mL?1) analyzed with DLLME-SFO-HPLC. Peak identification: (1) p-nitrophenol; (2) 2-naphthol; (3) bisphenol A. Liquid-liquid microextraction method based on solidification of floating organic droplet (DLLME-SFO) has a high enrichment factor (84, 123and 97), acceptable relative recovery (85.0 %–110.0 %), good repeatability (5.27 %, 3.54 % and 3.16 %) and a wide linear range (10–800 ng · mL?1) for the determination of p-nitrophenol, 2-naphthol and bisphenol A.  相似文献   

7.
An ultrasound-assisted emulsification microextraction (USAEME) based on low-density solvents was successfully applied for the extraction and pre-concentration of four toxic nitrophenols in water samples. The extracted analytes were analyzed by high-performance liquid chromatography-UV detection. The important parameters influencing the extraction efficiency were studied and optimized utilizing two different optimization methods: one variable at a time (OVAT) and central composite design (CCD). The results showed that the emulsification process can be completed in a few seconds using low-density solvents, but almost 10–20?min is necessary for high-density solvents. Under the optimum conditions (extraction solvent, 1-octanol; extraction solvent volume, 40?µL; sample pH, 3.0; salt concentration, 20% (w/v) NaCl; extraction temperature, 40 (±3)°C), limits of detection of the method were in the range of 0.25 to 1?µg?L?1 and the repeatability and reproducibility of the proposed method, expressed as relative deviation, varied in the range of 2.2–4.2% and 4.7–6.9%, respectively. Linearity was found to be in the range of 1 to 200?µg?L?1 and the preconcentration factors (PFs) were between 77 and 175. The relative recoveries of the four nitrophenols from water samples at spiking level of 10.0?µg?L?1 were in the range of 92.0 to 115.0%.  相似文献   

8.
9.
Summary The determination of the total concentration of tetraalkyllead compounds in the air is based on the cryogenic condensation in a cooled trap at –130° C, thermal desorption at 60° C into impingers containing nitric acid and hydrogen peroxide and a determination with graphite furnace atomic-absorption. The method is highly specific and suffers no interferences from lead in the particulate phase. The detection limit is 42 ng Pb/m3 for air samples of ca. 3601.This work was carried out within the framework of the National Research and Development Program on Environment of the Interministrial Commission for Science Policy, Belgium.  相似文献   

10.
固相微萃取-气质联用测定胶州湾海水中有机锡化合物   总被引:4,自引:0,他引:4  
采用顶空固相微萃取-气质联用(HS-SPME-GC-MS)技术测定了胶州湾海水中有机锡的含量.样品用4%的四乙基硼化钠(NaBEt4)进行衍生,同时用PDMS纤维进行萃取,萃取富集后,用气质联用仪进行测定.通过分析,该方法中MBT的线性范围为10~1000ng/L,DBT和TBT的线性范围为50~1000ng/L,相对标准偏差低于14.0%,回收率在70.0%~125.0%之间,检出限低于12.5ng/L;通过所建立的方法对胶州湾海水中有机锡的污染现状进行了调查,发现胶州湾海水中存在不同程度的有机锡污染.  相似文献   

11.
12.
Headspace solid-phase microextraction (SPME) followed by gas chromatography (GC) coupled to pulsed flame photometric detection have been investigated for the simultaneous speciation analysis of 14 organotin compounds, including methyl-, butyl-, phenyl-, and octyltins compounds. The analytical process (sorption on SPME fibre and thermal desorption in GC injection port) has been optimised using experimental designs. Six operating factors were considered in order to evaluate their influence on the performances of a SPME-based procedure. The evaluation of accuracy, precision and limits of detection (LODs) according to ISO standards and IUPAC recommendations has allowed the method to be validated. The LODs obtained for the 14 studied organotins compounds are widely sub-ng(Sn) l(-1). The precision evaluated using relative standard deviation ranges between 9 and 25% from five determinations of the analytes at 0.25-125 ng(Sn) l(-1) concentrations. The accuracy was studied throughout the analysis of spiked environmental samples. These first results show that headspace SPME appears really as attractive for organotins determination in the environment and the monitoring of their biogeochemical cycle.  相似文献   

13.
In this study, a fast, simple and efficient ultrasound-assisted emulsification microextraction (USAEME) method was successfully developed based on applying low density organic solvents. Fourteen microliters of toluene was injected slowly into a 12 mL home-designed centrifuge glass vial containing an aqueous sample that was located inside the ultrasonic water bath. The formed emulsion was centrifuged and 2 μL of separated toluene (about 4 μL) was injected into a gas chromatographic system equipped with a flame ionization detector (GC-FID) for analysis. Some polycyclic aromatic hydrocarbons (PAHs) were selected as model compounds for developing the method and evaluating its performance and to compare the efficiency of the proposed method with previously reported techniques. Several factors influencing the emulsification, extraction and collection efficiency such as the nature and volume of organic solvent, emulsification–extraction temperature, ionic strength and equilibrium and centrifugation times were investigated and optimized. Under the optimum conditions, preconcentration factors (PFs) in a range of 1776–2714 were obtained. The performance of the proposed method was studied in terms of linear dynamic range (LDRs from 0.05 to 100 μg L−1), linearity (R2 ≥ 0.994), precision (repeatability: RSD% ≤ 7.9, reproducibility: RSD% ≤ 14.6) and extraction percents (59.2–90.5%). Limits of detection (LODs) in the range of 0.02–0.05 μg L−1 were obtained for different PAHs. The applicability of the proposed method was evaluated by the extraction and determination of PAHs from several natural water samples.  相似文献   

14.
Volatile organic compounds (VOCs) are toxic compounds in the air, water and land. In the proposed method, ultrasound-assisted emulsification microextraction (USAEME) combined with gas chromatography-mass spectrometry (GC-MS) has been developed for the extraction and determination of eight VOCs in water samples. The influence of each experimental parameter of this method (the type of extraction solvent, volume of extraction solvent, salt addition, sonication time and extraction temperature) was optimized. The procedure for USAEME was as follows: 15 μL of 1-bromooctane was used as the extraction solvent; 10 mL sample solution in a centrifuge tube with a cover was then placed in an ultrasonic water bath for 3 min. After centrifugation, 2 μL of the settled 1-bromooctane extract was injected into the GC-MS for further analysis. The optimized results indicated that the linear range is 0.1-100.0 μg/L and the limits of detection (LODs) are 0.033-0.092 μg/L for the eight analytes. The relative standard deviations (RSD), enrichment factors (EFs) and relative recoveries (RR) of the method when used on lake water samples were 2.8-9.5, 96-284 and 83-110%. The performance of the proposed method was gauged by analyzing samples of tap water, lake water and river water samples.  相似文献   

15.
The use of two automated sample preparation techniques, solid-phase microextraction (SPME) and purge and trap (P&T) systems are critically compared for the GC–MS determination of eight volatile organic compounds (VOCs), including trihalomethanes (THMs), in drinking water samples. Compounds chosen for the comparison are regulated by Spanish and European official guidelines for drinking waters. Experimental parameters investigated for the two sample preparation techniques included SPME type of fibers, SPME modality, P&T gas flow, extraction and desorption times and desorption temperatures. Thus, optimal experimental conditions have been worked out for the SPME and P&T techniques. Under such optimised conditions, detection limits, precision and accuracy were evaluated. Both methods fulfilled the values that the official guidelines establish. The P&T–GC–MS method offers LDs ranged from 0.004 to 0.2 ng mL−1, repeatabilities below 6% and recoveries between 81 and 117%; while LDs ranging from 0.008 to 0.7 ng mL−1, 1–12% R.S.D. and recoveries from 80 to 119% were achieved with the SPME–GC–MS method. Finally, we chose P&T–GC–MS method as the best for this determination and we validate this methodology by its application to the analysis of an Aquacheck Interlaboratory Exercise.  相似文献   

16.
超声辅助分散液-液微萃取测定水样中的铜   总被引:1,自引:1,他引:1  
铜是人体必需的营养元素之一,对造血细胞生长,某些酶的活性及人体内分泌有一定的生理作用,但摄取量过多就会引发多种疾病,包括急性铜中毒、肝豆状核变性、儿童肝内胆汁淤积等[1].随着工业的发展,铜污染日益严重,环境中铜含量的测定已成为国家环保部门重点监测的项目之一.因此,研究准确测定痕量铜的方法具有重要意义.  相似文献   

17.
The performance of the gas chromatography/alternating current plasma detector as a selective detector for organolead compounds is investigated. The helium make-up flow rate and the spatial position from which the lead emission is viewed, have an effect on the detector response. The detection limit for tetrabutyl lead was established as 130 pg/s and the lead selectivity ratio was found to exceed 13,800. Some applications of organolead determination in complex matrices were also studied in order to demonstrate the selectivity and sensitivity of the alternating current plasma detector.  相似文献   

18.
建立了顶空固相微萃取(HSSPME)-气相色谱(GC)-质谱(MS)联用测定纺织品中甲苯、4-乙烯基环己烯、苯乙烯、萘和1-苯基环己烯5种挥发性有机物(VOCs)的分析方法。选择聚二甲基硅氧烷(PDMS)作为萃取涂层,优化了SPME的萃取条件,包括平衡时间、萃取时间、萃取温度、顶空体积、离子强度、搅拌速度、解吸温度和时间以及GC—MS仪器条件。对于甲苯、4-乙烯基环己烯、苯乙烯、萘和1-苯基环己烯方法线性范围分别为0.087~870、3.32~3320、2.28~2280、0.015~150和0.050~50.0ng/g;检出限分别为0.005、0.042、0.670、0.008和0.011ng/g。实际样品加标回收率在80.1%~122%之间,RSD在0.8%~8.6%之间。方法符合纺织品中痕量VOCs的快速分析要求。  相似文献   

19.
Carbon nanotubes are a kind of new carbon-based nanomaterials, which have drawn great attention in many application fields. The potential of single-walled carbon nanotubes (SWCNTs) as solid-phase microextraction (SPME) adsorbent for the preconcentration of environmental pollutants has been investigated in recent years. In the present study, the feasibility of SWCNTs as SPME adsorbent for the determination of monobutyltin, dibutyltin and tributyltin in seawater samples was studied. To achieve this aim, the potential factors affecting the SPME efficiency, including extraction time, extraction temperature, desorption time, desorption temperature, and salinity were optimized. The developed method showed good performance according to the ICH (International Conference on Harmonization of Technical Requirements for Analytical Methods) criteria. The acquired calibration curves were linear (r ≥ 0.992) over the concentration range from ≤12 to 2000 ng L−1. For all of the analytes, the limit of detection at signal-to-noise ratio of 3 was below 5 ng L−1. Furthermore, in comparison with the commercial carboxen/polydimethylsiloxane fiber, the developed SWCNT fiber showed better thermal stability (over 350 °C) and longer life span (over 150 times). The application of the proposed method in environmental analyses was shown by analyzing seawater samples from the harbors on the Persian Gulf for butyltin residues. Some of the butyltins were detected in the analyzed samples. Results of the present study demonstrate the feasibility of the SWCNTs as SPME adsorbent for the determination of butyltins in seawater samples.  相似文献   

20.
Triethyltin, tributyltin, diphenyltin and triphenyltin were selected as model compounds. The method is based on in situ ethylation and simultaneous headspace-solid-phase microextraction (HS-SPME) and gas chromatographic-mass spectrometry analysis (GC-MS). The extraction procedure was optimized studying some variables such as reaction time, salinity, sample volume and headspace volume. SPME-GC-MS and SPME-GC-FID techniques were compared; quality assurance parameters such as sensitivity, selectivity and precision were established. The proposed procedure showed limits of detection between 0.025 and 1 ng/L. The linearity was in the 0.025-5000 ng/L range. The precision expressed as relative standard deviations (RSD), were below 20%. Real wastewaters and seawaters were analyzed. The method permits controlling legislated annual average values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号